## PRNC030

PRNC 30

# PUERTO RICO NUCLEAR CENTER 

PROGRESS SUMMARY REPORT NO. 2

NEUTRON DIFFRACTION PROGRAM
[OPERATED BY UNIVERSITY OF PUERTO RICO UNDER CONTRACT NNO, AT (40-1\}-1833 FOR U. 5. ATOMIC ENERGY COMMISSION
---Page Break---
---Page Break---
NEUTRON DIFFRACTION

PROGRESS SUMMARY REPORT No. 2

Ismael Almodivar ? Principal Investigator
with Guest Scientists
8. Chalmers Frazer, H. J. Bielen,

K, Okado, and M. I. Koy

March 1964
---Page Break---
---Page Break---
TABLE OF CONTENTS.

List of Tables ond Figures

INTRODUCTION 2.0.20.

SUMMARY OF RESULTS .

Copper Sulfate veseeseee 2
Iron Orthosiicte .. seuaeeee 3

Borium Nickelote - 5

OTHER CURRENT RESEARCH PROBLEMS 6

Copper Formate 6
Crystal Structure Analysis ot low temperatures. se 6

## EQUIPMENT .. 7

References see 8

Tobles. 9

Figures u
---Page Break---
7

10

## LIST OF TABLES AND FIGURES

## TABLES

Positional ond temperature coordinates for CoWO, with stondard deviations .. 9

Short distances ond angles in CcWO, .

## FIGURES

b axis projection of CoWQ, ...
axis projection of CuSO ,

Neutron diffraction pattems for CuSQ, The only obvious change is o new peck,
ar a9" 3

Difference pattern for CuSO, . Peok distortions are coused by imperfect matching of

He ond N, dato .i4
\$ onis projection of olivine ( $\mathrm{Mg}, \mathrm{SiQ}$, ) .. wo 5
Difference powder pattern for $\mathrm{Fe}, \mathrm{SiO}$, ceseee ene sees 16

Modern (US) neutron spectrometer designed and constructed by BNL for PRNC .. 17

Second neutron spectrometer in operation at PRNC, The diffractometer assembly was doncted to the UPR by the Westinghouse Electric Corporation 18

X-ray diffrection equipment ond occesories now in operation for research at PRNC .. 19

Equipment end area designated for microscopic studies of enystals 2... 2... «+ 20
---Page Break---
INTRODUCTION

The neutron diffraction group ot the Puerto Rico Nucleor Center hos worked on ?essentially two types of problems. The first is concezned with the chemical binding of atoms in crystals end molecules, and the second with the nature of ferromagnetism and ontiferromagnetism

Both problems are related to the spatial arrangement of atoms in molecules. If either
>erays or neutrons cre scattered from crystals, patterns can sometimes be anclyzed which show the orrongement of atoms in the crystol. The omplitude of $x$-rays diffracted from atoms is proportiona! to the atomic number of the scattering atoms. Thus, if there ore light and heavy atoms in the same compound, the contribution of the light otom is very weck and its position can be determined only with great difficulty. IW neutrons are used, however, they are scottered by the ruciet of the atoms, ond as o result, diffraction of neutrons by light elements ?compares favorably with that from heavier elements

There also is a neutromelectron spin interaction in compounds which possess toms with unpaired electrons. Since the magnetic properties of substances ore related to the way the electron spins ore arranged within the crystal, neutron diffraction provides on accurate method for determining such spin arrangements (magnetic structures)

## SUMMARY OF RESULTS

Calcium Tungstate (CaWO, )*
The first neutron diffraction problem investigated atthe Nuclear Center wes a single cexystal structure cnclysis of CaWO, . Preliminary results of this study were included in Progress Summary Report No. 1, March 1963. Final results ore summarized here

While the CaWO,_ structure is usually considered to be typical of that adopted by on 180, compounds, the oxygen coordinates have been known! with on
foccurecy of only about 0.1 A . The reason for this is that the B atom is clwoys one of rather high atomic number, relative to oxygen, and hence the exygen contributions to x-roy structure foctors are compcrctively small. in the neutron cose, the oxygen scattering length does not differ greatly from thot of the other atoms. Accordingly, neutron structure analysis was Undertaken. In the course of our work, it woslearnt that Zalkin ond Templeton? have been
?engaged in on independent study of the structure using very eccurete x-ray data and modern refinement techniques. Their results are in excellent egreement with thase reported here, importont series of

\author{

* "A Neutron Diffraction Refinement of CaWO,", Mi. Koy, BC. Frzer, and |. Almoier,
} 4. Chem. Phys. 40, 504 (1964)


## ---Page Break---

CaWO, exystellizes in the tetrogenc! space group 14, /a ond hes cell dimension wolue? of $o=5243+0002$ cnde $=11.376+0.003 \mathrm{~A}$. The Ca ond W atoms ore in the fourfold symmetry fixed positions 4(b) ond 4(a), respectively, ond oxygen is in the 16(f) general positon. A diagram of the structure is given in fig. 1

Least squares refinement calculations, carried out on (h of) ond (hh) dato collected from somples cut from o large synthetic crystl, led to 0 final $R$ value of 0041 . The \{incl parameters (with the cell origin chosen at the tungsten site) cre Fisted in Table I ond compared with the values obtcined from x-ray studies, Teble II shows the important interctomic distances and bond angles. The WO," group is necrly regular but the small distortion is outside of experimental error.

[^0]?The onhydious sulfates of the divalent transition elemerts form an interesting group cf -mogratic compounds. Mgggetic_structures have clready been determined for FeSO, NISQ, .«-CoSQ, ond -CoSQ.""? Discussed here ore the results of @ neutron diffrac~ tion study of CuSO, , undertaken in centinuation of an investigation by two of the present ceuthars (LA. ond B.CF.) at Brockhaven with Or. P, J. Brown,

Because of the low Cu"® moment, ond becouse of troublesome peak overlaps in @ neutron powder patiern, the magnetic structure of CuSO, should be investigated using single capstals, ingle crystals of suitable size ere not ecsly grown, clthough the polyenstolline Cenhydrous suite is easily obtcined from thepentchydrate sclt. Accordingly, the problem thas been spproached by the onalysis of powder dota. If these data are considered along
?with the magnetic measurements of Kreines? ,a complete determination of the magnetic sted
ture is possible

CuSO, hos the orthorhombic $2^{\circ} 80$, type cxstal structure? with space group Porm,

See fig 2. The tour erystallographically equivalent Cu"* ions ore located on the 000 , $00 \%$, Vs Ye 0, end Ye Ye Vesites, For the cose where the magnetic cell is identical with the chemical cel, the possible collinear spin configurations for ntiferremagnetie ordering Gre s-+4 0, \#4 -7,00d += + Inthe Wallan = Koehler - Berteut notation these ?orrongements are labelled G, C, end A, respectively? Each of them leads to a distinct set of
rmognetic reflections.

In comparing diffraction pattems taken at $42^{\circ} \mathrm{K}$ ond $77^{\circ}$, only one clearly resolved ew peok was found in the fow temperature pattern, See figs. 3 ond 4 . This indexed os the (0.0 1) reflection, which is characteristic of type A ordering. A change in intensity wos also found for the combination (0.2 1), (lll) peak, egain cherecteristic of type A. The other
---Page Break---
intensity changes shown in fig. 4 are not relicble, due to overlop with residual oluminum lines from the cryostat.
?While this small amount of information is sufficient to identify the ordering scheme, it does net yield reliable information on the magnitude and orientation of the $\mathrm{Cu"}$ " $®$ moment, Here it is useful to consider the magnetic measurements of Kreines $®$ Kreines used small single crystals which were oriented by morphology and xrays. While the setting was not specified in her paper, it can be identified from the cell dimensions as Pemn. Her fig. 4 is
drawn incorrectly, since the Cu sites are improperly assigned fer this setting, but this does not affect the conclusions which may be drawn from the measurements. According to Kceines $X,=X y=X$, and $X y=X$, . This of course suggests © collinear spin structure with the spin axis parallel to 9 . With this essumption the Cul moment calculated from the neutron diffraction dota ljy_+ 08 expected fortis ion. The spn ordering mode i A, +++ -ontheO00,00\%, V4 120.18 Yo Y sites, with the moment ovientations? long the 9 oxis of the Pam cell
ie.

Iron Orthsilicate (Fe, SiO, )
Until quite recently, very litle hos been known cbout the magnetic properties of the transition metal clivine type compounds. See fig. 5. Early this year, Kondo and Miychora® Published magnetic susceptibility data on the orthosicates of divalent $\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}$, and Ni between $77^{\circ} \mathrm{K}$ end $300^{\circ} \mathrm{K}$. The curves suggest that magnetic transitions will be found in all of these compounds at lower tenperctures. A transition in polycrystalline $\mathrm{Fe}, \mathrm{SiO}$, hos been ?ound by the present cuthors by neutron diffraction mecsuremerts, and by Tokei end Cox!® by magnetic susceptibility measurements Subsequent work on single crystals has shown thot there are in foct two transitions, ove at about $35^{\circ} \mathrm{K}$ and one at about $\mathrm{S} 5^{\circ} \mathrm{K}$. Foyalite mineral samples kindly supplied by Or. Cliford Frondel, ef Harvard Univesity, were used for all of these measurements. The neutron analysis of the magnetic orden collection of accurate single crystal dota, Some preliminory results derived from powder data are alreody included ot this time
is now in progress with the

Inthe orthorhombic ovine structure?, space group Pam (0,"* ), there re four formula units per unit cell. The cell of $\mathrm{Fe}, \mathrm{SiQ}$, has, dimension vatues'8f,
$0=482 \mathrm{~A} b=1048 \mathrm{~A} \mathrm{c}=600 \mathrm{~A}$
?There are two four-fold set of $\mathrm{Fe}^{*}$ tons.
Fe, in4 (ce) 000,904, 440, \%
Fe, in 4 (cdi t ytait Vaan, Vary,
---Page Break---
Inthe ideol olivine structure $x=O$ ond $y=Y 4$, but the values observed in olivine itself ore 0.99 ond 0.281 , respectively. Each of the Fe"? ions is cctehedral coordination with oxygen and one may expect magnetic interactions of the some nature as the B-B intercction in spinel structures. In addition there ore superexchange paths evcilable vio the covalent \$1;* groups.

If the magnetie ond chemical cells are identical, os proves to be the case in $\mathrm{Fe}, \mathrm{SiO}$,. there are eight spin vectors in the cell, and hence a large number of entiferramagnetic configurations. These can be reduced considerably by symmetry considerations, but even then there cre 19 possible collinear spin ordering modes, ond of course there are many more ?combination modes that become possible for canted spin structures. The problem of sorting through all these possiblities to sotisfy observed neutron intensities is complicated by the
\{ree $x$ ond y parameters $f$ Fe, . For one thing, these porometers must be accurately determined os part of the onalysis, but moce important difficulty is that the magnetic extinction «ules which would opply for Fez spins in the ideol olivine structure ore no longer valid. At this preliminary stoge, however, the ideal structure is being assumed, This should be reosonbly sofe for determining the principal features of the magnetic structure, since the intensity contributions arising from norvideal shifts should be small,

Let the spins on the Fe, 4(a) sites be numbered | through 4 in the some order as given obove. Assuring ideol positions for Fe, , let the spins on the 4(c) sites be numbered 5 through 8 in the following order:

0 M4 Va, 0\% \%, eh \%, Ve HV

If one calculates mognetic extinction conditions for the various possible collinear enti ferromagnetic spin configurations itis found that none of these can account for the observed dota. Hence there must be ot least two spin directions in the structure. The proper spin vectors moy be corstructed from their components by using combinations of the collinear ordering modes.
?The most intense reflection in the pattern is the (100). See fig. 6. This peok can orise ?rom two different modes but only one of them can yield o high intensity

12345678

In this ordering scheme the spin components form alternating poralle! cheets on the (200) planes. This made, which is the dominant one in the structure i ossocioted with the crystal
---Page Break---
logrophic b axis. Analysis of the date indicates $@+-+-<-+-$ arrangement of spin components parallel to 9 .
?The components in the $\Phi$ direction are small, if indeed they exist ot all. The Fe'* moment wos found to be oppraximately 4 j 4 g for both Fe , and Fe , . In both cases the spin vectors ?ore opproximately parallel to the XY plane and are tilted from the b axis by about $30^{\circ}$, with the tit alternating in sign os prescribed by the $\mathbb{¢}$ axis ordering made.

It should be pointed out thet these are preliminary results only, While they yield a very ?good agreement with the observed data, the structure is too complex for a completely reliable solution by powder methods.

Date collection from single erystels is progressing rapidly. Measurements on on axis oriented crystal ( 0 k Rdata ) hove been completed at $77^{\circ} \mathrm{K}$ and $42^{\circ} \mathrm{K}$. Intensity measurements of several reflections as a function of crystal temperature hove also been com= pleted, Collection of (ho 2) data is now in progress, Single crystal x-ray measurements ore ?also in progress in order to complement ond aid in the interpretation of neutron patterns,

The results obtained on BoNiO , have been largely negotive; however, it may be worthwhile to make few remorks on this rather unusual compound, There were several reasons wiy it wos chosen for study. In the first place, Lander?s trial-and-error determination of the oxygen positions from visually estimated x-ray date did not seem overly convincing since the atomic number of Ba is quite high ond even that of Ni is relatively high Some preliminary packing calculations revealed other possible structures which were not mentioned by Lander, and one of these in particular seemed as likely os the one he reported. Also, the square planar oxygen coordination by $\mathrm{Ni}^{* *}$ was mast urusual in view of Lander's observation of a nearly ?normal? paramagnetic moment corresponding to 1.8 unpaired electrons. The explanation suggested by Lander for the observed moment is thet there are additional bonds Letween neighboring nickel ions, os evidenced by the very short Ni-Ni distonce of 236 A. Finally, the orthorhombic Cmem structure is similar in many respects to the anhydrous sulfate structures, and it was of interest to investigate possible magnetic ordering at low tempertures

Essentially, the structure investigation led to 0 confirmation of Lander?s structure. It ?may be thot some significant parameter changes can be found (this seems to be the case with the oxygen y parameter), but there is no doubt that Lander?s general configuretion is correct,

The mogretic studies have not been so conclusive, In @ paper separate from his
report on the BoNiO , structure, Lender quotes unpublished susceptibility measurements of F Morin'* The temperature range is not given, but it is stated thot the Curie-Weiss fow is obeyed with $A=180^{\circ}$, ond thot the calculated number of unpcired electrons per nickel ion is 183 , From this one might expect to find o Néel point well above the temperature of liquid helium. However, there are no obvious changes in the neutron powder potters in going down to this temperature. Through the courtesy of Drs. W.J. Takei ond DE. Cox ${ }^{\circ}$ of the Westingnouse Research Laboratories, the authors were oble to obtoin magnetic susceptibility cate down to $42^{\circ} \mathrm{K}$. These data disag:eed somewhat with Morin's in ging \& = 72" ?ond approximately one unpaired electron per nickel ?on. The Curie-Weiss law wos obeyed ?ery well down to liquid $N$, , but the 1 / curve begen to fol! off from a stroight line at lower temperatures, suggestive of an opproaching trarsition, Unfortunately, Tokei end Cox were Uncble to toke data between $42^{\circ} \mathrm{K}$ and opproximatel
${ }^{\circ} \mathrm{K}$, so there was na definite evidence
of transition. Also, the magnetic sample was found to be somewhat impure, so not foith con be ploced in the differe
much
rem Morin?s measurements, If the Ni mo
by the dato of Toke! and Cox, itis possible
tow 5 Ity 05 indi
Ciffroction statistics were rot sufficient'y good to cbsene ordering This wo
true if the ordering is type A, since pea: 2:erlaps hopren to be very bod for this cose
beparticulerly

# ?This is es much os can be scid on this problem for the moment, Further megnetic measurements must be made at low temperotutes cn @ pure sample before continuing with 

reutron diffraction work.

## ?OTHER CURRENT RESEARCH PROBLEMS

Copper Formate Tetrahydrate $\mathrm{Cu}(\mathrm{HCOO}), ? 4 \mathrm{H}, 0$

Lerge single crystals of this compound have been grown from saturated solutions of copper carbonate in $30 \%$ formic acid, The crystals decompose rapidly on
tact with ir and
therefore have been cut and mounted inside thin-wall gloss containers. Collection of (o k \& tend 9.0.2) dota have been completed os pert of the enstel structure enalysis row in pro ?ress. The structure has been examined previcusly by x-rays" but this study did not yield Inydragen positions.

Copper formote also shows very interesting magnetic properties ot low temper-
tures"? becoming anti-ferromagnetic betow $17^{\circ} \mathrm{K}$. An investigation of the magrstic structure of this compound will follow its structure analysis.
---Page Break---
Crystal Structure Analysis at Low Temperatures

Refinement of the techniques of single crystal growth at low temperatures is in progress, Although small crystals for x-ray analysis have been grown we hove found a series of difficulties, mainly ice formotion on the targer copiliavies used ta enclose the somple. The Use of a cry-box type enclosure fitted with @ mylar window through which the reutron beam posses seems promising, No work has previously been reported or structure onalysis by neutron diffroction at tow temperatures. Among cthers, we are interested in the structure refinement Cf methonal, dimethyl acetylene, formamide, end diamenia hydrate,

## EQUIPMENT.

?A modern spectrometer designed and constructed at the Braokhaven National Loboratory hes been instoiled and is now in operation See fig. 7. Ta's excellent versatile machine Permits Continucus variation of the neutron wovelength. It has been designed for werk with hi
eperetor to change callimatorsin a few minutes without removing the monochromator hou
?assembly. Furthermore, a progreming unit can easily be attoched to the spectrometer without rodification,
vy magnels and cryostats, and features 9 rotating cell metor ostembly which ellows

The somewhat primitive diffractometer donated to PRNC by BNL has becn sent to the Georgia Institute of Technology. A more advanced ard precise instrument doncted to the University by the Westinghouse Electric Corporation is now in operation. A photograph of this mochine is shown in fig. 8

X-roy d Hrcetion equipment has been eccuired during the period covered by this report to complement the diffecction apporatus described cbove. The powder diifractometer and ?ezocioted enu pment are shown in fig. 9. Figure 10 shows the microscope focilties used ta Lunt enstals ond to study some of their properties
---Page Break---

## REFERENCES

LG Sin ond A. Nylender, Arkiv Kemi Min. Geol, 17A, No. 4 (1943)
A Zalkin and DH. Templeton (private communication).
BC. Frazer and P. J. Brown, Phys. Rev. 125, 1283 (1952),
PL. Brown ond BC. Frozer, Phys. Rev. 129, 1145 (1963)
EF. Bertaut, J, Coing-Boyat, and A. De la Polme, Phys Letters 2, 178 (1563).

NM. Kreines, Zhur. Eksp. i Teoret, Fiz (1958.

Eng, tons? Sov. Phys. JETP 8, 971 (1959)

PA, Kokkeres and PJ, Rentzperis, Acta Cryst. 11, 361 (1953)
EF. Berreut, J. Appl. Phys, Suppl. 33, 1138 (1962)
H. Konda and \$. Miyahara, J. Phys. Soc. Japon 18, 305 (1963)
W.J-Tekei and DE Cox (unpublished data)

NV. Belov, ENN. Belova, NH. Andricnova.and P. F
Smirnova, Dokl, Akad, Nouk SSSR \$1, 399 (1951),

H Winchell, Amer. Cryst. Assoc. Meeting Abstr. p 14 (Apr. 10-12, 1950).
JJ. Londer, Acta Cyst. 4, 148 (1951)

JJ. Lender, J. Am, Chem, Soc. 73, 2450 (1951).
R. Kiriyoma, H, Sbomoto and K. Matsuo Acta. Cryst 7, 482 (1954)

J, tah and Y. Kemiya, J. Phys. Soe. Jopon 17, Suppl, B-1, 512 (1962)

THosedo and R, Miedema, J. Phys. Soc.
Jopan 17, Suppl. B-1, 518 (1962).
---Page Break---
Table | Positional end temperature coordinates for CWO, with standard deviations.

Ongen SGN zer KFA,
x 02 © om ois cong o2m3 005
y 0150205040013 oust 0.0006
z 005 ©0015 ose1 ?00006 ooze 001
ny 0115 oon 0.0073 o.0oi4
Pa 0100001600057 oooi2
P33 ons 0000300016 oon
Fiz $00016 \cos =-00014007$
Fig 0.0008 ? coos 0.00050 .0002
Pa 0.000 .0005 aos oon
Colcium
Fn 00710004000510022
P33 oon 000100019 c.000s
Tungsten
Fu 0.0036 coco 000380022
---Page Break---

0

Table II - Short distances and angles in CaWO,

WO, Group Distance Standard
congle
0.003,
ry
ov
004
a-ay 220003
Otter Close
pproacives
C?-9 25790.005
Ca,? 0, cou
O-Oy oo
9-0, 274 oom

0-2 92938 coos
0-90, 6 com
Q-o an com

+ For numbering scheme, see fig. $1 \geqslant 0.003 \mathrm{~A}$ added for torsional oscillation
---Page Break---
b axis projection of CoWO,
---Page Break---
b
a | orm setting) @ at Cs
ig 2 ? ax's projection of CuSQ,
---Page Break---
NEUTRON COUNTS AT $77{ }^{\circ}$ «

Cu SO 34
$\mathrm{n}=105$ ©
x0
we =

## ? 2

xh $x$
zof 22
wl $20^{\circ}$
2618 S

2a 165
$24 s$

2 ee
. we
$168 ?$
146
e+ ?

OS SW Rw 12022826 2B 0B Ba

## COUNTER ANGLE +28

Fig 3 Neutron diffraction pattems for cus The only obvious change
iso new peck at $39^{\circ}$
---Page Break---
NEUTRON COUNTS
on? cu SO4 ~
$2400+1\left(42^{\circ} \mathrm{K}\right)-1\left(77^{\circ} \mathrm{K}\right) \mid$
$2000+4$
(003)

1600 F g91) wan) (200 1
Woop! (023)(13) 7
$800+$ oan teen 4

- i bea
-400

L ee

810214168202224228303234
COUNTER ANGLE ${ }^{\circ} 28$

Fig. 4 Difference p coused
by impertect mate
---Page Break---
420
te
a0
a
---Page Break---
NEUTRON COUNTS /1000

Fe, Sid,
DIFFERENCE PATTERN:
$4.2^{\circ} \mathrm{K}$ DATA- $77^{\circ} \mathrm{K}$ DATA
ui tone momar
(010) on on (en un) canoe)
(020) ?90H 120) 190234130)
(00) (030) (030)
pe
481262024
COUNTER ANGLE 26
Fig 6 Difference powder pattern for $\mathrm{Fe}, \mathrm{SiO}$,
---Page Break---
---Page Break---
---Page Break---

2 uoyroyyp foxx 6 Sig
---Page Break---
---Page Break---


[^0]:    ?Anhydrous Copper Sulfate (CuSO, )

