PRNC084

PRNG-84

PUERTO RICO NUCLEAR CENTER

NEUTRON DIFFRACTION PROGRAM
PROGRESS SUMMARY REPORT NO. 4
M.1. KAY, |. ALMODOVAR, J. A. GONZALO,
D.T. CROMER, K. OKADA

MAY 1965 ? APRIL 1966
?OPERATED BY UNIVERSITY OF PUERTO RICO UNDER CONTRACT
NO, AT (40-1)-1833 FOR U. 5. ATOMIC ENERGY COMMISSION
---Page Break---

PUERTO RICO NUCLEAR CENTER
HEUTRON DIFFRACTION PROGRAM

PROGRESS SIMNARY REPORT no,

Me. Kay, T. Almodovar, J.A. Gonzalo
Det. Croaer, Ke Okada

APRIL 1966
---Page Break---
STABLE OF CONTENTS

Introduction «

Copper Fornate fetranydrate
tune
aetartaric Acid
?The Magnetic Structure of -Pdalhs «

Magnetic Intensity Progran

Conclusions

References «+++.
?Tables

Figures «
---Page Break---

eraopvcrion

Tue neutron diffraction grou at the Puerto Rico Nuclear Center hes
Worked on essentially two types of problens. The first is concerned with the chenieal binding of atons in crystals and molecules, and the second with the nature of ferronagnetion.

Both problens are related to the spatial arrangenent of atons in molecules. If either x-rays or neutrons are scattered fron exystels, patterns can sone
?times be analyzed which show the arranger
it of atons in the crystal. The
amplitude of x-rays diffracted from atons is proportional to the atomic munber of scattering atoms. ?Thus, if there are Light and heey atens in the sane compound, the contribution of the Light atons is very weak and its position can be determined only with great difficulty. If neutrons are used, however, ?they are scattered by the miclei of the atous, and as a result, diffraction of neutrons by Light elesents compares favorably with that from heavier elenente. ?There is also \& neutron-electron spin interaction in compounds which possess stons vith unpaired electrons. Since the magnetic properties of substance fare related to the say the electron spin are arranged within the crystal, neutron diffraction provides an accurate method for determining such spin arrangements (nagnetic structures).
ae
---Page Break---

Copper Formate Tetrahyarate

Introduction
?The physical properties of copper formate tetrahydrate have been exten (,2,544,5,6)
sively studied + Phase transitions to a partially ordered
magnetic state at 50% and to an antiferrenagnetic state at about 17% have been reported. The crystal structure has been determined vith x-rays by Kiriyena, Toanoto, and vateuo (7), vno found the crystal to be sonoslinic, space group P2,/a with
$8.25, b=0.28$, and $o=6.35 R, / 2101^{\circ} 5^{\prime}$ and with two fone units per unit cell. A dielectric ancmaly at $-38.9^{\circ} \mathrm{C}$ has been reported by Kiriyama @) and independently by this laboratory, (9), ?In this report we give ?the results of a neutron distraction anelyeis of the room teaperature phase of copper fornate tetratydrate and an account of the alelectrte ancaaly.
?he structure of this compound cen be described as two alternating layers, ?one of copper fornate near $£ 0$, see Pig, 1, and one of water near $2=2 / 2$,
e Fig. 2 rt has been proposed ${ }^{\circ} \mathrm{\circ}$) thet the magnetic ordering arises from
exchange through the formate groups. The $\mathrm{Cu}-\mathrm{Cu}$ distance within the copper formate layers is 5.77% ?The shortest Cu-Cu distance between layers is 6.35\%, which is the $\$$ axis, A path through caygen neighbors exists, but includes ?hydrogen bonds. Thus it is not surprising that a partial ordering which may
be two dimentional occurs at a higher teaperature than antiferronagnetien.
---Page Break---
Preparation of Specinens

Saturated solutions of copper formate were prepared by dissolving cu $005^{\circ} \mathrm{CuO}$)» in $30^{\circ} / \mathrm{y}$ aqueous formic acid, Large single crystals vere readiy grom by suspending seed crystals in the solution and slowly evaporating ft constant temperature (50.5\%). Crystals were cut using a wet string sav. For dielectric measurecents thin plates of dixensions $5 \times 5 \times 0.5$ am were cut perpendicular to the b axis. Aix drying aflver paint (Dupont Conductive Silver Coating Material No. 4627) was applied to serve as electrodes and then ?the erystal and electrodes were covered by a plastic spray to avoid dehydration. For the neutron diffraction work parallelepipeds about $2 \times 2 . \times 6$ ma wore
feut along each of the three crystallographic axes, These crystals were sealed

A Growing showing the crystal habit is given in Fig.3.

?The Phase Transition

0
fs noted in a preliminary report ty ckada ${ }^{\circ}$), an antiterroelectric trane
sition occurs in copper formate tetratydrate at -30.9\%C. At this terperature ?the crystal shovs @ discontimous decrease in dielectric constant as the temperature is lovered. A peak value of the dielectric constant 50 times as creat
fs thet observed ty xériyana (C) vas measured (Fig. a). Below the Curse point ?the crystal shows a double hysteresis loop in the curve of electric field
versus polarization, within a snall texperature range.
---Page Break---
Figure ta also shows the dielectric constant at lov ac amplitude and

1000 eps versus temperature, As the temperature 1s decreased, the dielectric
constant of the (C10) plate rises to a peak of 1500 at -38.9% and a large discontinuous decrease occurs at this temperature. Above this transition point, Te, the Curse-Weiss law, \& $=\mathrm{C} /(\mathrm{t} \sim 2)$, is satisfied, and a plot of the reciprocal dielectric constant versus temperature is a straight line, as seen in the figure with $\mathrm{T},=-58 \%$ and $\mathrm{C}=3.2 \times 10+{ }^{\circ} \mathrm{C}$. ?the (0OL) plate has a lov dielectric constant varying gradually from 20 at roon teaperature to 5 at Liguid-nitrogen ?temperature without any anomaly. The (100) plate eave a suali discontinuity
?at T as shown in Fig ba, ?This might be attributed to anall component of the large ancnaly in the [010] direction oving to the cutting error of the
?crystal plate, in contrast to the perfect orientation of the (00), "
crystal plate, This high anisotropy can be expected fron the predaninanty layer structure of thie crystal.
?A clear double E-D hysteresis loop was cbserved within a certain tesperature region below the tranaition point with the ordinary Saiyer-Tover hyster= esis-loop efreuit with @ high ac amplitude of $19 \mathrm{kV} . \mathrm{cm}$ and 60 cps . At low ?temperature the E-D relation is a straight Line, With rising temperature, nonlinearities appear st the ends of the straight line. A double hysteresis Loop cones out with further warming. (see Pig. be).

On passing through the transition point, the loop disappears. The double hysteresis locp was observed only in e narrow temperature region fros $-42.6 \% \mathrm{C}$ to the transition point. This range scened to depend upon the applied ac amplitude.

---Page Break---

4 m attempt was nade to obtain saturated branches at both ends of the ouble loops. However, saturation in the curve of polarization versus electric field could not be obtained. hen the sveeping amplitude of the AC field was not very strong, say $19 \mathrm{KV} /$ em, the double Loop was quite stable. hen a strong field was epplied, instead of saturation, an unusual effect appeared in the eritical field, The critical field decreased gradually and both loops becane Jerger. In shout one minute the oops coalesced te becone @ single loop sinilar to a distorted ferreeiectric hysteresis loop. After decreasing the AC field ?to the field strength that nad given the stable loop this procedure could be repeate
?This phencuenon \{s similar in appearance to the AC annealing effect in a damaged ferroelectric crystal irradiated above the Curie ?point $(202,12,13)$, We, as yet, have no interpretation of this phenosenon ard more experiments
are required,

Figure 5 illustrates the thermal hysteresis in the transition, The rate (of change in temperature was about $0.07^{\circ} \varphi / a i n$. and the accuracy of temperature Beaurenent vas $+0.05 \%$, The temperature was first lovered from roam temperature to $-63^{\circ} \mathrm{C}$ and then raised. A thermal. hysteresis of $0.3^{\circ} \mathrm{C}$ occurs in the transition. Although small, this tysteresis ie definitely larger than expert ental error.

Effects of Dc biasing fielés on the transition are show in Fig. 64 ?Superimposing a DC field on the 1000 eycle AC ficla of onal] amplitude used for the dielectric constant measurement moved the transition point to « lover
?enperature, This behavior is usual for e first order antiferroelectric phase transition.
---Page Break---
X-ray photographs, using precession canera and Cuky radiation, were ?taken at various temperatures from room temperature, about $20^{\circ} \mathrm{C}$, to $-50 \% \mathrm{C}$.
?The photographs were recorded on the sae fin by moving the cassette a small
?ourt for each exposure. Although no special care was taken to achieve
precise measurements of the absolute lattice constants, relative values accurate ?to at least $0.5 / 5$ were obtained, Mo discontinuous change, either in diffraction intensity or in lattice constants was detectable by this technique, nor ald any reflections appear that violate the systematic extinctions of space group ee $(8,18)$
results are in agreenent with Kiriyana and indicate that ?the transition probably results fron hydrogen motion. ?Themtal expansion coefficients are $5 \times 10-\%,-2 \times 10-7$ and $8 \times 10^{\circ *} /{ }^{\circ} \mathrm{c}$ along a, b, and Φ respec tively.

Sone hkO neutron reflections vere measured below the Curie point. Mo reflections which should be absent in space group P2,/ a were observed, but small to moderate intensity changes were noted, indicating further that the
transition is caused by hydrogen motion.
Neutron Diffraction Study of the Crystal Structure

Single crystal neutron diffraction intensity measurements were made on ?the three principal tones of copper formate tetratydrate at rooa temperature,

Torentz corrections, and in the final stages of the analysis, emptrical extine?tion corrections were applied, Full matrix Least aquares refinenents using Asotropic temperature factors and with separate scale factors for each zone mininized $\phi u(984$ whore $w=1 /(6 \mathrm{P}+0.005 \mathrm{~F})$ and.sP was based on counting statiaticn For unobserved reflections w $=0$.

6
---Page Break---
The OO reflections from the Oke and nO zones also had $v=0$ because they vere so strongly influenced by extinction. Discrepancy indices quoted are REIOFI/é|Foj and Ry $=£ x$) onfer| Fo| with unobserved reflections omitted. these values are listed in Table 1.

The xeray data of Kiriyann et a2. () vere refined by least aquares using ?eotropie temperature factors and with weights $w=1 /(P,+0.027 .2)$, The orteinal paraneters, the Le
t squares parancters and our final heavy toa pareneters are given in Table 2,

Difference Fourser projections vere computed fron the neutron data with ?the heavy atoas renoved by using the x-ray parameters of the nonbydrogen atone found by Kiriyams et al. m, ?In these difference Fouriers we expacted to find ?the formate Hydrogen and four water hydrogens. The formate hydrogen and three of the four vater hydrogens vere fairly evident, but no definite indication of the fourth water hydrogen was cbserved.
least squares refinement, folloved by further difference Fouriers, was made with all atons except the fourth nydrogen included. These difference

Fouriers hed negative regions (hydrogen has a negative
eattering amplitude)
near two of the symetry centers. Neither of these positions was far enough frome center to accomodate e hydrogen atom. Placing a disordered half hydrogen in each position would result in a structure having an average of

MeO and $\mathrm{OH}^{\prime \prime}$ in one position and $\mathrm{H}, 0$ and $\mathrm{H}, 0+$ in the other position ?The latter pair in the water coordinated to the copper ion and the notion of a positive Ydronium fon being coordinated to a positive copper ion is untenable. owever, ?the existence of negative scattering regions near the symetry centers wes
undeniable.
---Page Break---
We were then lead, partly by small features in the difference Fouriers and partly by the know geometry of water, to a achene of statistically disordered water solecules. Tt was
's isordered water nolecules, It was this order that led us to examine the dielectric properties of the material, This @isordered structure may be regarded as @ superposition of the four structures shown in Fig, 7. These are actually two similar structures and the sane structures related by a center of symetry. The hydrogen atous (2) ?and $H(2)$ in Fig. 2 have weight $3 / 4$ and $H(3)$ has weight $1 / 2$. tn half of the junit cels vater (1) has the orientation $\mathrm{H}(1)-\mathrm{OH}(2)$, in one fourth $\mathrm{H}(2)-\mathrm{O}-\mathrm{H}(3)$?and in one fourth $\mathrm{H}(2)$ ~
(5). Thus, water (1) assunes either of three positions.

Water (2) also assunes either of three positions, but one bond, $\mathrm{O}-\mathrm{H}(4)$, renains fixed. $H()$ has unit weight, $H(5)$ has weight $1 / 2$ and $1(6)$ and $H(7)$ nave weight Wi. In halt of the untt celts the orientation is $\mathrm{i}(4)-0-1(5)$, in one fourth

St $\mathrm{Ae} \mathrm{H}(4)-0-\mathrm{H}(6)$ and in one fourtn $\mathrm{H}(4)-0-\mathrm{H}(7)$. This model was refined by deast squares leading to $R=0.10$ and $R,=0,066$. The resulting hydrogen Paraneters are given in Table 5.

Fron PMR measurenents Kiriyana (?) assigned positions for three of the ater hydrogens. She concluded that the fourth hydrogen was freely rotating about a fixed O-4(4). Hor description of water (1) corresponds to our ortentation $\mathrm{H}(1)-0-\mathrm{H}(2)$. Her model, with the rotating water molecule, was refined by least squares resulting in $R=0.270$ and $R,=0.356$. The agrecnent is clearly less satisfactory than for our disordered model. One might argue that the positions of $\mathrm{H}(5), \mathrm{H}(6)$ and (7) are approximations to a free rotation oF minima in a hindered rotation, However, the presence of cur $\mathrm{H}(5)$, onttted
in Kirtyana's model, does seem to be necessary for good refinenent of the
---Page Break---
neutron diffraction date. The phase transition and the ease of dehydration suggest that the water moleciles are not firmly bound.

Bond distances and angles are given in Table lb, Standard deviations have
been calculated using the entire correlation natrix and include estinates of unit cell errors. The result
for the heavy atoms are the sane as obtained fron the x-ray measurenents within experinental error. Some of the bond lengths ?and angles for vater appear to be in disagreement with other studies of hydrated crystals. However, the accuracy of hydrogen positions 1s not great. Reasons for this lov accuracy are that the ratio of observations to parancters is low, high beckground from inelastic hydrogen scattering, and because fractional hydrogen atons have a anal scattering length, even for neutrons. Also, most of the nydrogen 2 parameters are near 0 or $1 / 2$ and thus only half of the reflections, those with Yoda, are sensitive to the z paraneters. énally, wwe have postulated that the positions of all atons are independent of the positions of all atons are independent of the positions of the others, an assumption that \{2 nct completely correct. The higher thermal paraneters for water, observed both in the x-ray and neutron studies, may indeed be a cons
quence of $=$ small variation in oxygen position depending on the particular orientation of the water molecule.
?There are five 0-0 distances of about 2.68 Contacts of this nagnitude fare generally hydrogen bonds in hydested crystals. The proposed disorder Permits all of these contacts to be hydrogen bonded all of the time. Somewhat similar Gisoreder is, in fact, found in ice.
---Page Break---
?Sie class $48 \mathrm{NaAL}(\mathrm{SO}),, .12 \mathrm{H}, 0$. The Aelun forns Af the cation is large and ?the alum, which is by far the most comon type, occurs if the cation is of intermediate size, In ail the alums there are txo crystallographically Gifferent vater molecules, each associated exclusively with either the monovalent or trivalent cation, The trivalent cation is always surrounded by etx ater molecules in « nearly regular octahedron but the orientation of the octa-
hedron with respect to the cell axes 1 s different in each of the three types.

Tie monovalent cation én the . $\$$ and /alums also has six vatere in a nearly regular octanedron
?he 2erge cation inj) alum can accomodate 12 aaygen neighbors. fo attain thie Large coordination number the water octahedron is compressed along the ?reefold axis and stretched out nortal to thie axis until \{ $\$ 4 \mathrm{~s}$ nearly planar ?he two ends of the resulting trigonk) antipriam are separated ty only stout
0.068 The sulfate groups at each end of this antiprism are then noved along the threefold axis tovard the central cation until six sulfate oxygens are bout the sane distance from the cation as are the water molecules. A slightly Gistorted cubic close packed array of oxygens thus surround the cation,

In the 7 structure six water molecules approach the snall sodium cation ?much nore closely than in the structure. This motion cannot take place unles ?the hydrogen bonding systen changes, The most striking result is that the ?sulfate groups become oppositely oriented along the threefold axis,

Discussions of the relations anong the three structure have been given vy Lipson 9) and vy gona and snirane $\left[{ }^{\circ}\right)$, one of the eluns has been investigated by modern counting techniques although Okaya, ahmed, Pepinsky
and Vand on have studied monomethyl ammonium aluminum sulfate dodecahydrate
(sp) ty photographic methods and refined the structure by least squares. rave et ats 7) ao not ctassity miso in a particular structure type because ?the difference betweena andpalun types is not adequately defined structurally?. On the other hand we believe that the three structure types my be clearly distinguished and that MASD is a meaber of the palims. The characteristic
that distinguishes the 7 aluns tron theg and aaluns is the orientation of the sulfate group. In the 7 aluns this group is oriented opposite to its orientation in theqand@alums, The saluns have twelvefold and thew alums
have sixfold coordination of exygen about the central, monovalent cation.
an

Okaya et al. yrobably overlooked this difference in coordination because
the distances which they state are from the center of gravity of the CHi ,*
on are actually frem the nitrogen or carbon atous of the disordered ion.
Several of the aluas have been investigated using both X-ray and neutron

Aiffraction methods. The x-ray data was taken at Los Alanos Scientific
laboratory end the Neutron Data at Puerto Rico Nuclear Center.
cesium Alun (Ce AL (50,)Q.22\%,0)
Experizental,
?To grov the crystals needed for the study, fine wires vere suspended in ?a aupersaturated solution of Cs alun and merous small crystals formed on ?these wires. Most of the crystals vere scraped fron the wires and the renain~ ?der were suspended in a saturated solution which was then allowed to evapor-
fate slovly. An octahedron, mm on an edge, was selected for study.
---Page Break---
?The crystal vas briefly Lmersed in Liquid nitrogen to increase its noeate ?ature and thus reduce the effects of extinction. the neutron diffraction Amtenaities of the nO zone were measured. Using \& wavelength of 1.068 , none Squtvalent reflections within the range $2 £ 90^{\circ}$ were seasured, of these, 6\& were observed according to the criterion (l-Background) ¢ $2.0 \times(\mathrm{r}+$ Backgrouna)'/2, Because of the large incoherent seettering, of hydrogen, absorption corrections were applied, The Linear absorption coefficient for Ce alun is 452 emi .

Calculated transaission factors were between 0.292 and 0.353 ,
?The atonie positions given by Lipson (15) vere used as starting values for a full matrix least squares refinenent of all non-hydrogen peranete
?Anisotropic thermal paraneters were used in the form,
ep -[Bah? + Bpgk® + 3591? + mayne + By3M + DosIA).

Two sets of X-ray data were taken; one with « fixed counter, fixed crystal ?technique, and the other using a " 20 scan? technique, ?The results are given im table 5, In nearly alt cases the parameter differences are sualler than
© standard deviation. The thermal paraneters obtained fren the fixed crystal data, hovever, are systematically slightly larger, probably because at higher
speles anali portion of the intensity is lost because of $41 \sim 0\{2$ separation.
---Page Break---
Refinement of the Structure with Neutron Diffraction Date

Structure factors were calculated by using the parameters obtained from
?the X-ray analysis but without any hydrogen contribution. The structure factors were initially scaled so thet $\mathrm{gF},=\mathrm{ZF}$, and a difference Fourier projection was calculated, Approximate hydrogen positions were obtained and @ least squares refinement minimizing $¢ \mathrm{v}(\mathrm{F},-\mathrm{x})$? var calculated where $w=w e /(F,+0.02 \# 2)$. Parameters in this refinement vere isotropic tesperature factors for exch crystallographically different atom, the scale factor land coordinates of the hydrogen atoms. The sulfur and oxygen atons were
not allowed to move, Table 6 gives the final parameter. Pig. 8 is a diff
ence Fourier shoving hydrogen atom: only. Discussion
?The interatomic @istances and bond angles are given in Table 7. The errors were couputed by using the entire variance-covariance matrix and include ?the trivial effect of lattice constant error. However, the errors in distances and angles involving hydrogen assume no error in the heavy atom positions. The anisotropic thermal parameters were transformed to obtain the thermal ellipsoid paraneters which are given in Table 8
?The isctropic thermal paraneters computed from the neutron data, except ?those for cesium and aluminin, are in good agreement with the isotropic parmeters (Table 6) equivalent to the anisotropic paraneters obtained from the X-ray data (18). The reason for the two exceptions is thet cesium and aluminus
fare distinguished in projection only by their different scattering lengths
---Page Break---
and their different thermal parancters. ?Therefore, the correlation between eq and Bay Ss large (-0.82) and de manifest in the relatively large standard deviations of these two paraneters.
?The octahedron about alusinun is oriented alaost exactly aleng the cell
?axes and is only very slightly distorted. The cs
(2) Aistances are a little
longer than the Cs-0,(1) distances, 3.454 R vs. 3.367% ?The analogous distanc in MASD' are 3.42R to 0,(2) and 3.618 to O ,(2).
?The sulfate group is an almost perfect tetrahedron. Rigid body analysis of the sulfate group was carried out by the method of Cruickshank 9) uoing

2 code written ty Truebioed ? ${ }^{\circ \circ}$, he 7 andy matric
are in Table 9. Corrections
to the 5-0 distances were computed according to the in phase assumption of busing and tery ("), he o-0 distances before and after being corrected are given in Table 7. These distances agree well vith other recent accurate deter?minations which have been tabulated by Larson (1965). The direction of maximum motion of $0,(2) 12$ normal to the S-0 bond. The largest axis of the $0,(2)$?thermal ellipsoid makes an angle of 85.7° with the $8-0$ bond and the smallest axis makes an angle of 9.1° with the bond.
?There is only one possible system of hydrogen bonding in this structure. AL hydrogen atoas take part in hydrogen bonds and all oxygen atoms except (2) have at Least one hydrogen bond. ?The hydrogen positions could be reasonably guessed from the heavy atons locations obtained by x-rays. Hydrogen atoms could be clearly observed in a three dimensional difference Fourier computed with reflections having cin 0/p (O.MR-1, The Oa bond lengths vere corrected for thernal notion according to Busing and Levy (@) by using the isotropic ---Page Break--thermal paraneters obtained fran the neutron @iffraction data, These distances, vefore and after being corrected, are given in Table 7 and agree well with
other neutron diffraction analysis of hydrated crystals. $\mathrm{H}(1)$ on $0,(2)$ is ?vonded to $0,(1)$ and this oxygen, being on a threefold axis, is bonded to three (1) stoma, A senewhat elongated trigonal pyranié consisting of the three ydrogen atoas and the sulfur atom thus surrounds (2). $\mathrm{H}(2)$ on Q ,(2) end
(3) on O,(2) are bonded to 02(2). These hydrogen atons and the sulfur atom ?are nearly co-planar with $0,(2) .(4)$ on $G,(2)$ is bonded to $\mathrm{O},(1)$. The angles involving $\mathrm{H}(2), \mathrm{H}(2)$ and H() about $0,(2)$ are nearly tetrahedral.
riamitton (22) nas given an enpirical relation between 0-0 hydrogen bond
lengths and O-i bond Lengths or O-ti-=-0 angles. His empirical functions and ?the present experimental values are plotted in Fig. 9. The present $0-\mathrm{H}$ Aistances are systematically analler than predicted but the differences are within the standard deviation of the measurenent and the standard deviation of the prediction of the empirical function, There is no systematic trend

An the Oo

0 angles, all of viich are nonlinear, but again the differences
between the present experimental values and the empirical curve are not stgntficant.
patnough the present resulte are of considerably greater accuracy than ?those of ttpson 9), the muimum shift in atomic position in only 0.04 R . Except as noted, all calculations on the aluse were performed on an

TIN 7094 at Los Alanos using codes written by Larson, Root and Cromer (92),
---Page Break---
other Alums

Weutron diffraction (and X-ray data have been taken on scdiua and deuterated ammonium alum), The-data is now being analyzed, If these studies indicate, ?the structure of potassium alum will be exanined to determine the role of Inydrogen bonding in sulfate disorder which e rather pronounced in the potassium
alum,
mr a-Tartaric Acid.

The crystal structure of d-tertaric acid vas determined some fifteen years ago by Stern and Beevers (2\%) ny etegant deconvolution of the Patterson
function. Although their results revealed an interesting network of O-i
hydrogen bonds and the general shape of the molecule, no attempt was made to refine the structure enough so thet the bond lengths and angles of this important oyacid can be discussed with confidence. the present report deals with the refinenent of the structure based on three-dimensional x-ray intensity data obtained by counter measurenent on COXD, a conputer-controlied aiftrac?tometer (Cole, Okaya and Chanbers), (4) ana on two projections of neutron Aigtraction data,
?The x-ray reaults were obtained by Okaya and Stemple of TRY Wastson laboratory. ?The neutron results were collected st P-RN.C. and the work reported jointly (25),
?The cel edges from the never x-ray vork are $a=7.715 R, b=6.006$,
$=6.251$ 700K. $\mathrm{J}=100.1$ - $^{*} .29$, the apace group 4a Pay .
are
---Page Break---
(25)

Starting from the atomic coordinates given by Stern and Beevers
?the refinenent of the structure was made from the x-ray data in the usual namner by uring a full-netrix least-squares progran on an TEM 709. only isotropic temperature factors were used for the hydrogen tons. The atonic coordinates, their standard deviations and thermal paraneters are shown in Table 10. As shown in Table 10, the isotropic temperature factors of two hydrogen atoms have become negative; although it is doubtful that any read Significance can be attributed to such a result, one notices that these two hydrogen atoas are those bonded to the carbon atoms.

To confirm and refine the hydrogen positions, tvo (hOg and hkO zones of neutron diffraction data were taken. Because of an accident, the hOA data hhad to be collected on two different crystals,

Refinenent was carried out by means of least squares analysis, starting with the x-ray parameter set. The carbon and oxygen positional parareters (as given in Table 10) vere held constant. Refinenent vas carried out on ?all the hydrogen paraneters, the carbon and oxygen tenperature paraneters and three scale factors. The refinement proceeded with isotropic temperature
factors, folloved by six rounds of lea
squares with anisotropic temperetaige
factors. The weights are $w=1 /(a(F)+.025 F)$ vheree (P) is based on counting statistics, Non-observed reflections were given zero weight. The resultant

Paraneters are given in Table 10.
---Page Break---
Discussion

Bond distances and angles have been calculated from the x-ray atomic coordinates in Table 10 (a); they ere shown in Figures 10 and 11, respectively. ?Around $C(1)$ and $0(2)$, only the average of the three angles involving the hydrogen atcm is show for each stem, ?The results of the hydrogen determination ty neutron diffraction are given in Table 11 for comparison, ?The molecule consists of two - $\mathrm{CH}-\mathrm{OH}-\mathrm{COOH}$ parts, each part containing a planar carbeayl
group and a tetrahedrel -CH-OI ~ configuration, In each -hydrexcarbexyl gxaup, the -tydroxyl oxygen stays close to the carboxyl plane; it is interesting to note that a similar situation also exists in the mesotartaric ion (26). Tt nay be deen fron the figures thet although these two parts are similar in over-all shape, there exist slight differences. ?The carboxyl group of part

3 , (2), (2), $0(2)$, and $0(5)$, is less planar than that of part II and the
$0(1)-0(5)$ distance is mich shorter than the corresponding $0(+)-0(6)$ distance in part 11 ; this is mainly due to the large (4) $\sim \Phi(3) \sim O(4)$ aneie. Tt is interesting to notice that such seemingly equivalent groups start to teke slightly different configurations. Tt is ifficult to decide whether ?this agymetry of the molecule is due only to differences in the hydrogen-bond formation or is inherent in the tartrate ion itself. The question might be ansvered when accurate crystal structure analysis are made in various crystals with tartaric as well as mesotartaric ions. The planes of the two parts make fan angle of 54.69, In these two carboxyl groups which retain their protons,
?there are two distinet C-C-0 angles; narrow C~
?oH of around 120° and wide
-19-
---Page Break---
$\mathrm{C}-\mathrm{C}=0$ of about 125°. This situation is found in many erystel structures of molecules with carboxyl groups; in case a carboxyl group loses its proton, ?the two C-?-0 angles becore alnost equivalent and are sbout 118°. The change $4 n$ the shape of carboxyl groups due to the state of Sontzation vas exhibited An various acid salts of atearboxiic acids, ong, amonium hydrogen D-tartrate
(21), dipotassiun ethylene-tetracarbonylate, potassiun acid phthalate ant others.
?The structure consists of a complicated network of O-H--O hydrogen bonds. The schene 1s essentially the sano as that given by Stern and Beevers; the fifth contact given in their paper 1s ruled out as hydrogen Bond. Dononue(29) discussed the hydrogen-bond aysten in the crystal and proposed two possible sechenes; the difference between these two schenes is based on the position of the proton on carboxyl I, 1.?., the choice between $0(2)$ and (5) for the tydrowt oxygen of this group. The difference in the two C-C-0 angles given by Stern and Beevers leads to the conclusive evidence on the position of the proton without even locating ?ts position; therefore, the hydrogen-bond syste could have uniquely been assigned (Scheme A by Donohue) $4 f$ enough data on the
shape of carboxyl groups had been accumlated. As is evident from the figures
land Table 12, the tvo carboxyl groupe do not have identical eurroundings: possible implication of the situation on the symmetry of the Jon has been

Aiscussed in the previous paragraphs
?The neutron diffraction data confirm the hydrogen bonding scheme deduced
from the x-ray date. As has been noted in previously determined compounds

?the values of the O-H and C-H bond distances (see Table 11). from neutron data

 -20----Page Break---
?are, about « 158 longer than those determined from x-ray date. ?This discrepancy As due to an inadequate description of the x-ray scattering from a bound hydrogen.

The tond distances derived fron the neutron diffraction date are closer to accepted values. In addition, the two (H-0) hydrogen bond (see Table 12)
fangles which were found to be less than 160° by x-rays are shown to be closer
to 170°. Although the accuracy of the determinaticn 4 s not really high enough
?to make the following statenert with certainly, we note that the inverse
relationship between O-ii and 0-0 distance in hydrogen bonds scens to hold.
Ww The Magnetic Structure of S-Pd, ine

Introduction
?At room temperature Pd , \}ing has a tetragonally distorted CsCl type crystal
structure, with $(0,0,0)$ positions in the unit cell occupied by Fé atoms, and
(1/2,1/2,2/2) positions occupied by $\mathrm{Mn}(4 / 5)$ and Pé (1/5) atoms. The arrange

Bent of the Yh and Pd atons in the body center position 4s rando in the ?S-phase and is possibly ordered in the \# «phase. These differences give rise to aifferent magnetic properties $\left(5^{\circ}\right)$, pecentiy, « detailed inves?Yigation of the magnetic and themodynasic properties for both phases was
carried out ty H. Yamauchi), who suggested that these properties could
be explained using one of two possible antiferronagnetic lattices. These
have unit cells defined by $a!=J$
$\mathrm{gS}!=\mathrm{g})$ anda $!=\mathrm{a}, \mathrm{ct}=2 \mathrm{C}$, respectively;
where the umprined quantities refer to the chemical cell. ?The purpose of
?this investigation, which deals with the g-phase only, was to be ascertain,
---Page Break---
?ay means of @ powder neutron diffraction experiment, if one of these two nodels 1 s indeed correct. The tenperature dependence of magnetic peaks was examined as yell.
?The powder sample, obtained from the MRC Manufacturing Corporation, had been prepared by arc melting. After heat treatment of the sample above 500° and quenching in eir to room temperature, the diffraction pattern vas consistant with§-Pa,jing. The tetragonal lattice parameters, $a=2.67$, and $\Phi=3.618$
as reported by Yanauchi (6) vere confimed.
Heutron Diffraction Results

Power neutron diffraction data vere collected to an angle of $20=45^{\circ}$ $(A=1.08 R)$ on thes -phase of Pagh, at room temperature, These data shoved magnetic peaks that could be indexed on the basis of a cell with $g=4 \%$ and
$\mathrm{g}!=\boldsymbol{\phi}$, All magnetic reflections conform to the condition $\mathrm{h}+\mathrm{k}$
aaa.
the new cell contains the disorderee $P, o, 4$ ston at the positions, $1 / 2$,
$0,1 / 2$ and $0,2 / 2,1 / 2$ hereatter referred to as the Mn site, The Pa tons are at $0,0,0$ and $2 / 2,3 / 2,0$.
?The diffraction intensities are satisfied if only the Mn moments are
considered to be aligned antiferronagnetically with the spin vectors perpen= ascular to the Φ axis, Tf Mn alone contains an ordered moment, only the angle trom the Φ axis may be determinea 6), , saturation moment of 4.16. 2 M
was assigned to the Ma on the basis of the observed intensity data and ite temperature dependence. The observed and calculated intensities for both
?the nuclear and magnetic peaks are given in Table 12, The experimental Mn "? Gn
form factor seasured by Corliss and Hastings ?717 was used.
te
---Page Break---
Since sone Pd moment has been cbserved in other Palin alloys, other possible uniatial nodels were investigated with the object of determing
?the possible Linits of Pa contribution.
?The symmetry of Pd site does not allow for an induced P moment and indeed no substantial inprovesent of the agreement is noted by assuming one. Nothing may be said about the Fd moment on the Mn site since the 1 and Pa monents for this site are extrenely highly correlated.
?The temperature dependence of magnetic intensities was exanined from ?room temperature to the transition point using the magnetic (101) and the contiguous mclear (101) reflection. ?the behavior of the magnetic mozent as a function of temperature 1s given in Fig. 12 and compared with the Brillouin function for $\$=4 / 2$, ?The agreenent $\{申$ quite good. Fron this curve? B.1. Jeg = 98 was deduced and used in ali calculations.

Pron the data, it vas concluded that the magnetic intensity ad not disappear completely until 380% which is somewhat higher than the Neel point of 350° reported by vamaucns (99), his temperature aifterence 4s not
surprising since Yamauchi reports that imperfect quenching or partial anneal-
?ing nay significantly alter the Neel temperature. Also noted vas a decrease in $\$$ accompanied ty an increase in a with increasing temperature in agreenent
2)
wsen maup et, a 7°,

Magnetic Intensity Progran

A Fortran computer progran has been written to compute magnetic neutron intensities, ?The input consists of the atomic positions of the atoms,
associated spin vectors, form factors, and indices of desired reflections.
23.
---Page Break---
?The output is the magnetic structure factor squared of the specified reflections.

Tt has been used to calculate the magnetic intensities of PA ,)ing, Ci Cr 2 and $\mathrm{Fe}, \mathrm{SiO}$,
?Thie progran is available as PRIC 78.
we Conclusions
?The knowledge gained from the previous studies will be briefly sumerized,
?The disordered hydrogen positions in copper foraate tetrahydrate et ?room temperature have been found and sone of the properties of the antiferroelectric transition at $-\mathrm{N} 0^{\circ}$ determined. The study raises many questions. Particularly, how is the structure related to the electrical effects? Since ?there is very Little change in intensity and no change in space group in passing through the transition, a change from dynamic to static atsonder nay be postulated. We hope to initiate a study that will define the atomic snitt caused by an electric field.
?the structure including hydrogens of the three Alun (AYB) (50,)+32H,0 types $(4,4,7)$ bave been refined by means of both x-ray (Los Alamos Scientific Laboratory) and neutron éiftraction (Puerto Rico Nuclear Center) data, ?Thep Alun, Cs $\mathrm{Al}(80),+224,$,0 is reported here. Analysis is nearing completion on sodium and deutero-amoniun elune. When complete, the structure should show the effect of +1 cation size and hydrogen bonding on the struc
?tural details of the series of coxpounds such as the shape of the oxygen
---Page Break---
octahedron around the \#1 cation and the disorder of the sulfate group (found in some Alums)-

Hevtron data has been combined with the x-ray date of Okaya and Stemple of IBM to give refinenent of the structure of dTertaric Acid, The hydrogen ponding schene has been unequivecally defined by the neutron data, In addition, st has been shown once again, thet use of the free ston form factor will ?shift the nyarogen position determined from x-ray data into the bond. That is,closer to the atom to which it is most tightly bound.
?tne -phase of Pain, 1s antiferronagnetic.the magnetic celt to related ?to the tetragonal chemical cell by the transformation at $=/ 2 \mathrm{a}$ and $\mathrm{c}!=\mathrm{c}$ tthe magnetic monent for Mn is $4.1+.2 \mathrm{~A}$, The spins are aligned perpendicular to the $\mathbb{\Phi}$ axts and the magnetization closely follows a Britiouin dependence
?from room to the Heel point.
---Page Break---
at
28,
a.
20.
a.

References
S.A. Friedberg and RB, Flippen, Proc. VII Int. Cont. Low Temp. Phys.» 122 (1960).

Je Itoh and Y. Kamiya, J. Phys. Soc. Japan 27, Suppl. B-1, 512 (1962).
?T Haseda, R. Wedena, ¥, Kobayashi and 8. Kanda, J. Phys. Soc. Jepan 22, Suppl. Bei, 528 (1962).

RB. Flippen and S.A, Friedberg, J. chen. Phys. 38, 2652 (1963).
4H. Kobiyash! and T, Haseda, J. Phys. Soc, Japan 18, 542 (1963).
S.C. Mathur and A. Mookergi, BULL, Am. Phys. Soc. 10, 254 (1965).
R. Kirlyaon, HI Toanoto and K. Matsuo, Acta Cryst. 7, 4\&2 (1954).

4H. Kirtyama, Bull, Chem, Soc. Japan 35, 1199 (1962).

K, Okada, Phys. Rev. Letters 15, 252 (1965).

L, Martin and H. Waterman, J. chem. Soc. 1559 (1959).
A.G. Chynoweth, Phys. Rev. 113, 159 (1959).

K, Okada, J. Phys. Soc. Japan 16, bik (1961).

JA, Gonzato and R.

- Arndt, J. Mol. Cryst. 1, to be published.

4H. Kiriyana, Bull. chem. Soc. Japan 35, 1205 (1962).

4H. Lipson, Proce Roy. Soe. A, 152, 347 (1935).
F, Jona and G. shirane, Ferroelectric Crystals, International Series of
Monographs on Solid State Physics, Vol. I+ 395. Oxford Ferguson tres

Y Okaya, MS.Ahmed, R, Pepinsky and V. Vand, Z. Krist. 109, 367, (1952).
W.c. Hamilton, Acta Cryst. 12,609 (2959).

1, Toh (1956).
K.K, Trueblodd, 1.U.Cr. World List of Computer Prograzs. et. ed. Groningen.

Deli J. Cruickshank, Acta Cryst.

WC. Hamilton, Annual Review of Physicel Chemistry, 15, 28, (1962).
$=$
---Page Break---
5.
36.
a

WR Busing, and HA. Levy, Acta Cryst. 17, 142 (1964).
$¥$. Stern and C.A. Beevers, Acta Cryst 3, 3h1, (1950).
HoCole, Y. Okaya and Few. Chambers, Rev. Sel. Inst. 34, 872, (1963).

1\%. Okaya, KR Stouple and Mol. Kay, The Crystal Structure of a-Tartaric
Acid. Submitted to Acta Cryst
J. Kroon, AP. Peerdnan and J.M. Vijvoet, Acta Cryst. 29, 295 (1965).
A.J. Van Bonne) and JM. Vijvoot, Acta Cryst. 12, 61, (1958).

Y kaya, Acta Cryst, 20, (to be published), (1966).

Je Donohue, J. Chem. 56, 502 (1952).
G. Grube, K. Bayer and H. Bim, 2. Electrochem, 42, 805 (1936).
G. Grube and 0. Winkler, 2. Blectroches. 42, 615 (1936).
B. Raub and W. Mahler, Z. Metallkunde 45, 450 (1954).
J.P. Burger, R Wenling and J. Wucher, J. Phys. Radium 20, 427 (1959).

MAR. Wendling, Compt. Rendus 252, 4083208 (1961).
H. Yamauchi, J. Phys. Soc. Japan, 19, 652 (1964).
G. Shirane, Acta Gryst. 32, 282 (1959).

LM, Corliss, ty ELLMot and JM. tastings, Phys. Rev. 104, 924 (1956).

Joe Cable, 2.0. Wollan, Wc. Koehler and HR. Chia, Phys. Rev.» 128,
BLE (asea\},
?2
---Page Break---
one
nko

AL date

Table 1

Discrepancy Indices for Copper Formate Tetrahydrate

Kirtyana ot at. (7)

R R
0.200 .090
oz 0.096
onan 0.098
0.095

Least Squares
nefindment oF Tofay Date

Ry
0.208
0.133 ,
ono
0.208
? hie Determination

R
0.052
0.201
0.220
0.208

y

oon,
0.080
os
0, 086
---Page Break---
Table 2

Heavy Atom Paraneters in Copper Formate Tetrahydrate

Least Squares

Kirtyann et aa Refinement of xoRay Data Tass Detersinetion

$0.84+0.098 ? 2.02+$ Ob RF
cx $0.2580 .238+0.0080 .237+0.00$
$¥ 2700.268+0.0020 .269 ¥ 0.001$
$z 0.0180 .018 ¥ 0.0020 .024 ¥ 0.001$
B35 6730.25 ob F016
$\mathrm{op}(2) \times 0.2060 .207+0.0010 .205+0.001$
$¥-c .092-0.090 ¥ 0001-0.092 ¥ 0.001$
$2-0.0800081 \neq 0-002-0.080$ F 0-001

B35 Lat F018 127 \$0.16
$o p(2) \times 0.137$ o.aah $0.106+0.00$
$\% 0.2100 .2120 .213=0.00$
\% 0.0860 .0920 .088 F oLoor

Buss x10 us Fo.
yl) $\times 0.425,0.425+0.002,0.430+0.002$
E 0.3990 .400 F 0.001 o.4on F 0.002

E $0.6470 .645 ¥ 0.0000 .641 ¥ 0.008$

EBL LI F021 19h F 0.20
oyl2) $\times 0.0862 .086+0,0020.089+0.008$
X $0.5490 .555 \not \approx 0.0010 .357$ F 0.008

E onkgs 0.488 F 0.002 o. B2 $¥ 0.008$

E35 210 ¥ $0.25259 \$ 0.22$
?Be
---Page Break---
Hydrogen Parameters in Copper Formate Tetrahydrate

Weg
$10.207+0.005$
BP $0.312+0.005$
Bf $0,481+0.008$
$220.475+0.009$
$20,084+0.003$,
We $0.089+0,009$
Yh $0.295+0.009$
Yk 0,0b0 +0.007
?Table 5
$0.652+0.008$
$0.385+0.005$
$0.296+0.008$
$0.462+0.007$
$0.520+0,005$
$0.475+0.010$
ots
$0.269+0.007$
oon
$\mathrm{O} 02+0.008$
0.592
0.598
0.005
0.005
$0.528+0.015$
$0.339+0.005$
$0.860+0.017$
$0.585+0.015$,
$0.533+0.009$
te
hes oak]
33406
3.6506
3942.6

BT E05
tans
bteat
29409
---Page Break---
tape \&

Within the formate groupe
$\mathrm{c}-0(1) 1.26+$ oak $0(2)-\mathrm{c}-0(2)$
$\mathrm{c}-0(2)$? $1.23 ¥ 0.01$? $\mathrm{H}-\mathrm{C}-\mathrm{O}(1)$
es EgEg3 Ease
sie started octahedron shout comer
Cu-Op(1) hy $2+0.1$ oak (1)-cu-Op(2)
eke kr eeyieirets\}
Cund(2) Op(2)-cu-)(2)
vater (2
cay Sale gart ik
O-n(3) $1.08 ¥ 0.0887$ + be
vater (2) (QxiyH[A) tates past ts 21 antes because 2 bas It visit)
$\mathrm{O}-\mathrm{H}() 9.95+0.068$ no $+6^{\circ}$
$\mathrm{O}-\mathrm{H}(5) 1,08$ * 0.0712655°
$0-u(6)$ L15 $¥ 0.0999$ FAP
o-n(7) $0.91 ¥ 0.07 \sim$
sytrogen tte
(2. (2) 2.83$)=\mathrm{H}(4)=<66+3^{\circ}$
wae fp eee $\mathrm{G},(2)-\mathrm{H}(4)-\mathrm{Op}(2) 166+3$
(2)-04(2) $2.81(1)-\mathrm{H}(5)-0,(2) 166+7^{\circ}$

4S: aa ee Out Oy £
tey-a(2 ? 5) ses?
aay iD 27 94(2)-H(5)-9,(2) $167+9$
(ye 5)) 2.82 Qy(1)-H(1)-04(2) $176+3^{\circ}$
1.84 (2) ia\} (2) $152 ¥ 6^{\circ}$
ie (6) wa\} 1.90 HIRO) 0 ~
(2) $\sim 9 y(2) 2.76+\mathrm{Oy}(2)-\mathrm{H}(3)-0,(2) 169+3^{\circ}$
3) $=0,2) \mathrm{t}(2) \# 7)=\mathrm{O}(2) 176 \neq 6^{\circ}$

H(7)-Gy2.) z * nie) ~
?Oxygens related by centers of symetry
wae
---Page Break---
ays
SE
sas:
Oltse
weet

Ba
By
ag
a
es
z
a

Ze
ze
gekos
eprcot
offest
695tt
watce
lores
ay
ote
zt
alg
tq
ty
corn ore
wre
6504
6059-
olor
60ST
oltent
Leetye-
gproze~

Tei09
aH66
opt
HS
Stir@-
oTrea-

SHBs9¢
env 66¢
ogee
6et0y
Legere
HOS
e
Ty
TM,
bi
Ue
Ty
?eqzgoe
otra
oface
ONtO9E
bd
ug
"
@
wrt outs one
saseo wi09 ur $\left(2^{\circ} 120^{\circ} 0+{ }^{\circ} \mathrm{a}\right) / \mathrm{S} x=$ a veqep uwos 92 au waz
saqumt JonoT ou put wasp TeAsh2 pews ouy wos ow Bioquna zoddn OGL seep uovaowssaTp Aor-x masz 0\%Ket?(*0S)tv80 203 sxanomesed sosnbe 42007
eckLat
econ
sciege
omens
eGren
Smser
ectrec
e204
ane
ele

Stet
stegte

Lio
gen
woo
§ orarn

9SF9¢t00 ? $0-$
oret $0000^{\circ} 0$
2eepave2 "0
on Snge"0
erat a96H'0
ontleont 0

3d 55 NK MH

0\$760200?0-
1666100 " $0-$
ng6ers $0^{\circ} 0$
$\mathrm{SrS} 9089^{\circ} 0$

Se3960nC 0
BAGOTHE'O

Z
ypoediag-t

Sovran t
wdtgest'o
THIKSST?O
LGLIEST?O~
Sr 26500
$<e 9 g 1 z^{\circ} 0$
anteeale-o
sisesse-o
onresee"o
etsoee6"0
stle2e'0
éé 3
(20
(ayo
(2) $\% 0$
(eo
---Page Break---
beast squares paraneters for Cshi(S0,
Equivalent isotropic thermal paranctes

Aten,

HQ)
H(2)
3)

H (8)
ce
a
0,(2)
0,(2)
oy)
0,(2)
a
$2.8 £ 07$
224005
$1.6 \$ 0.4$
2.74006

Sed 4 3a (2.6)
$0.5 £ 13$ (2.3)
$25+07$ (1.3)
3.94007 (25)
2.240 .3 (2.2)
$2.8+0.3(2.2)$
19 £02 (1.9)

Table 6
0.6042
$0.750+2$
0.69642
ose £3

Be
+12ii,0 from neutron diffraction dat
?from X-ray data are in parenthesii
x
$0.219+2$
$0.222+2$
$0.064+2$
$0.203+8$
$0.28+2$
$0.995+5$
0.5ib +2
$0.555+3$
---Page Break---

Table 7

Interatonic distances and angles in $\mathrm{CaAL}(30),,-22 \mathrm{H}, 0$
fron fixed crystal end neutron diffraction data.
Standard deviations in parentheses, apply to the right most digit

Distances corrected for thermal motion are in parentheses.

A-6 0,(2) 12.882(5)R
cs - 6 O,(1) 3. 361(5
26 at\} 33
?The sulfate group
$8=0,(2) 1.479(9) 04(1)-8405(2) 109 . .9(2)^{\circ}$
(alge) 05(2)-8-04(2: 109.0(2)
S-3 0,(2) L.475(5) Sola\} -O5(B)-oof2) 60.0
(2485) 05(2)-05(2)-08(2) 60.2(2)
$\mathrm{Og}(1)-509(2) 2.417(8) 0,(2)-0,(1)-05(2.59-5(3)$
seke-? ale) 2.39916)
Water molecules
$\mathrm{Oy}(2)-\mathrm{HQ}.) 0,961(26) \mathrm{H}(1)-0,(2)-\mathrm{H}(2)$ 207.6(24)
(0.955)
$0,(2)-H(2) 0.965(29)$
(0.968)
$\mathrm{o}(2)-\mathrm{H} 3) 0.974(26) \mathrm{H}(3)-04(2)-\mathrm{K}(4) 107.2(20)$
eat) (ails)
2).
wt (0.595)
Hydrogen bonds
05(2)-3 Oy(2) 2.822(6) 0,(2)-H(L)-4(2) 165(2)
05(2)-3 \#Q) 1.902(25)
05(2)- $\mathrm{Oy}(2)$ 2. 766(7) 04(2)-H(2)-0,(2) 1m)
es(2)- ate) Leugs)
0(2)-04(2) 2.648(7) 0(2)-H(5)-04(2) 166(3)
05(2)-Ht3) 2.692(27)
\{2)-0,(2) 2.635(7) 9461)-HC4)-04(2) 365(5)
ean Co 2.657(33)
Miscellaneous angles
22(2) ${ }^{\circ}(1)-0,(1)-H(1)$ rOafny ${ }^{\circ}$
130 e H(1)=09(1)-8 126(2\}
rome
$H(1)-0,109(2) H(2)-0,(2)-H(5)$ 101(1)
(2) $-0 \% \mathrm{~K} 126(2) 8=0, \mathrm{f} 2)-\mathrm{H}(2) 19(2$
\#(2)-04 20803) $8=05(2)-\mathrm{H}(3) 33(2)$
---Page Break---
table \&
?Thermal eLispsciae in $\operatorname{CoAL}(304),{ }^{*} 12 \mathrm{Hg} 0$, fixed crystal date
ters

CS
0)

04(2)
(2)

9,(2)

RS
Amplitude
g Ges Gee
SE SSE
g ERG E
pee
pirection angles relative to crystel axes

KER BEB

GOBER MYR

rrr
1.68

Lak
wae
ae 8

Ro

LB
Bie
2.6
a5
02
fret
BER

35-

Y
a ?

ST MT 5h
\neq

7 Skt 5h.T

Bu
reise
zen ane \&
evel
Ono CRF
---Page Break---
rable 9
?translation and torsional vibration matrices
for the sulfate group relative to the unit cell axes
$0.01600 .00159,0025$ feg. 28.88 .8
0,060 0.0015 | R 2 \#1 29.28 .8 \deg?
$0.0160,29.2$
0.0020 9.007 9.007 SL 59 BD

CH). (0.0020 0.0027 Rad 5.13 .9) dee ® ${ }^{\circledR}$
0.00 * 52
---Page Break---
ole
a gee
w obye
st 096s *
x 6
\&t Ee
wore
surnsoy uoyaoesss70 worsen
\% zot'o-
\%6 2yG'0
\% ste-0
é ee0
« zero
\% eo
? 61200
$z \$ 008^{\circ} 0$
n oreo
\& y62"0
kz Lt20 $0^{\circ} 0^{\prime \prime}$
ee S9LO"0~
eS \$906"0
@ 909

B $62^{\circ} 90$
\% ecko
\% x sway
Ot uF moTeTASP
yyeuTpzo09 STuOWY ?(8) OT STEVE
''t.ea
---Page Break---
es et vn 19 at ot
(oH (St (Ht (ou leye (oH

FP 9 ~ OT uy CesgR waBorPAY soz sxogo8s oangusadon oydos.0eT
---Page Break---
able 11
(a) Bond distances involving hydrogen atoms from coordinates determined from the neutron study.
(2) ~ HC)
(2) $=\mathrm{Ht}$)
afk) $=$ HGS)
$(5)=H(6)$
(2) - (2)
$(3)=(2)$
($>$) Bond angles in degrees
?around oxygens
eq.) 18 s
(a: hg \$3
(3) 243
oth $)=0$ (5) $=\mathrm{an} \mathrm{n}$ Fh
around $\Phi(1)$
$\mathrm{HL})=$ of2) $=02$) aah 3
$H(1)-(2) \sim c f 2) ? 107 \$ 3$
$H(1) \sim e(2)-o(3) 0$ F5
?round $\Phi(3)$
$H(2)-c(3)-o(4)$ nrsh
$(2)=6(3)=$ of iors
wa) 2603 26th) dog Eh

39-
---Page Break---
TABLE 12 Hydrogen-bond system in the D-tartaric acid crystal.
?The second values for $\mathrm{H}-0, \mathrm{H} . .0$ and angles around
hydrogens are those obtained by the neutron study.

Bonds A 2 c >
From (2) (4) (2) (5)
te (6) (3) a) (5)
of (my Bey de) Gey dey ae) Gx Beye) (lem ye)

Hydrogen (3) $\mathrm{H}(5)$ (4) (6)
irvoived

Distances 2.8392 .9092 .6532 .707
(a)

Ont 0.8, $0.980 .8,0.972 .9,1.000 .9,1.00$
He--0 2.1, 1.86 21, 195 1.8, 1.64 Lg, LTD
ingles
sro $157^{\circ}, 11^{\circ} 112^{\circ}, 1698176^{\circ}, 172^{\circ} 152^{\circ}, 168^{\circ}$
hydrogens:

Separations

Listed by 0-0, 0, $050,-7$ Os -0
Stern and

Beevers
---Page Break---
TABLE 15 A couparison of the cbgerved and calculated intensities (a)
from Paling at $\mathrm{T}=297 \mathrm{~K}$.
no los (teate), (roade), ojtova
(200) 26.20 .05
oon. 28.7 a 0.05
100332 3h9 o.0k
cca) 26.0 2b. 0.05
ao. wA3 wa 2.07
ao 5.65 d 0.35
(eno) 2 h
oe $3 b$ an 0.09
an 21.0
(noe) Bat
(212) aa 35 oe
oe ant 0.07
200 a1 0.35
(a) both nuclear and magnetic intensities given are,per chemical unit Celie Mbgg © 01595 10" cay yy $=0436 \times 207$ ess $52 B=1 G$
---Page Break---
---Page Break---
---Page Break---
---Page Break---

Fics 4b omubte nestereas oops of 108
---Page Break---
ayazveroea,

De JUNLVEIGN3L
St- Ov- Sb-

0" Hp - *(000H) 99
NI NO!
SIS3Y31SAH TWWY3HL

ISNVYL 3HL 40

AINA AXVYLIGYY LNVLSNOO 9141937310
---Page Break---
oayoaTaolp FAUT O43 uo

De JUNLVHIdWIL
$\mathrm{Se}-\mathrm{Ov}-\mathrm{Sb}-$

O'Hb (OODH) 99 NI

NOILISNVEL 3HL NO
493443 SVI8 30

LIND ASVELIBYY LNVLSNOD 9141937310
---Page Break---
---Page Break---
---Page Break---
---Page Break---

H(4)
jos
O12) O13)
13lg An.
120
C12) 2
1.52.
?TET
0.95
$\mathrm{H}(\mathrm{N}-\mathrm{C}(1) 140 \mathrm{~g}$
0.84
(5) O14) 1.545 OW$) ? \mathrm{H}\left(3^{\circ}\right.$

140 C13) 0\%
oN 8 | oft)
25
1Sly
C(4)
WI I3Ig
Lig 5)
Olé) 8 ot
0.87

H(6)

Fig. 10 Bond distances of d-Tartaric Acid from X-ray diffraction
---Page Break---
Figs 2
125.9

Bond ancles of dTartaric Acid from Xeray diffraction
---Page Break---
(22fea w22) £303 9
roxnqeisdiog, paowar Bh oyyeaTae" BL seT
(u1/4) 3unavaaam31 039NG3e

NOLLVZILINOWW 391LLv7ENS
---Page Break---

