PRNC094

PRNC=94

PUERTO RICO NUCLEAR CENTER

NEUTRON DIFFRACTION PROGRAM

PROGRESS SUMMARY REPORT NO. 5
M.I. KAY, SF. KAPLAN, R. KLEINBERG

HLL. RITTER, | ALMODOVAR, D.T. CROMER

APRIL, 1967

OPERATED BY UNIVERSITY OF PUERTO RICO UNDER CONTRACT
NO. AT (40-11-1833 FOR U.S. ATOMIC ENERGY COMMISSION
---Page Break---
Neatren Dittraction Progran
Progress Summary Report Ho. 5

MZ. Kay, 5.7. teplan, R. iotmherg

Bole Ritter, 1. Almodovar, D.2. Creaer

Apri, 1967
---Page Break---
?able of Contents

Introduction === 1
Manganese Formate Dihydrate ~
Copper Foruate Dinyérate 4

Liquia structures
tables ~
References
Figures

Publication List
---Page Break---
?The neutren diffraction group at the Puerto Rico Mucleer Center hes
worked on essentially two types of probleat, The first is concerned with
tthe chemical binding of atoms in crystals and molecules, and the second with ?the nature of ferronagnetie.

Both probleas are related to the spatial arrangesent of atone in molecules, If either x-reys er neutrons are scattered fron eryatele, patterns can scoatines be analyzed wich shov the errangenint of atona in ?the crystal. The amplitude of x-rays diffracted fron ataas is proportions) to the atonte muber of scattering tons, ?Thus, if there are Light and heavy tous in the sene compound, the contribution of the Light atone is very weak and ite position can be detarained only with great difficulty, If neutrons ?axe used, hovever, they are fexttored by the melet of the atoms, and at a remit, diffraction of neutrons by Might elenente compares fevorsbly ?with that fron heavier elanents,

Toere is also @ neutren-alactres spin intamactien in compounts viich possess atoas vith unpeized olectrons, Since the magnetic properties of substances are related to the way the electron spins ere arranged within
?the crystal, neutron diffraction provides an accurate method for deter~
mining auch spin arrangenents (naguetic structures).

Yanganese Formate Dityarate

1. Introduction

? In two papers by Okada (1965) and Okada, Kay, Crouer, and Almodovar (1965) ?the exystel structure and soue of the electrical properties of comer formate tetraiydrate vere described.
?The more common and nore stable form of the plus two formates of tonic size sinilar to copper or manganese is a monoclinic dihydrate phase, Of known siniler structure are the aacnesiun and manganese (Osaki, Takai and Watanabe) (1954), nereatter referred to as oli), eine (ort (2963)), copper (4 puxowska-strayzevsia (1965), hereafter referred as 38), and nickel (Krogunnn and Mattes (1963). The present study defines the hydrogen positions 4 n at Least one of these compounds (manganese) witch should te typical of ?the group. As might be expected from the ereater stability of the éitydrates, ?the manganous femate shows @ stable iyérogen bending schene with no disorder.
?The crystal structure of Mn formate dihydrate as been deternined by ?iW (2964) and by Mascarenhas (1954). The eld parameters (e~.06, be7.29, £9.60, 8097.7%) datersined by the former authors were used in the present study, ?The space group 48 F2s/e.
?The structure consists of Mal atena at cell corners related by symmetry to Mn atons at a face centers. A second aet of M2 positions is found in Band $¢$ face centers. In other vords set one 4 in the plane at X 60 and set
?two at $X=1 / 2$, The Manganese atoms near $X=0$ are linked together by fornates 4in the manner of copper formate ./ti,0 (Okada, Kay, Cromer, and Almodovar).
?To complete the cctabedren around Yi atens, the second formate group Links Mid te th? ine plane epproxinately perpendicular to (100). The structure 4a atom in the stereogran in Fig, 1.
---Page Break---
a
?The octahedron around Mn ? is completed by water axygens. The envi. ro.iamtG around the two types of manganese are thus radically different from ?each other; one is octahedrally coordinated to aix formate oxygens and
tthe other to two formate oxygens and four vater oxygens. ?This structure probebly accounts for the two magnetic transitions (Abe, Vorigait, Matsmra, ?Torii and Yeemgnta (196!)) found in Mn formate at 5.7K and 1.7\%. According ?to Abe et. a. (1964), cations on the first site, only, probably order, first ?to Ainonsionally et 5.7 and then totally at 1.7%

TE, Bagerizentel,
?ree zones of neutron diffraction data were taken on Im(HC02)2*2ie0 crystals gro from vater solution to find the hydrogen positions. A set of epproxinate paranrters vere found using (Fype ~ Fyn,c,o) Fourier projections and refined by neane of least squares (Roof, Craner, and Larson (1965)) to an R of O 12 .
?The final parameters are given in Table T and compared with the results of Gi. xcept for the y coordinate of C2, all coordinates agree within 2c. This ecrepancy seems to effect only the 05-C2-0h angle as seen in ?Table Tia.

MIT Conclusions
?The hydrogen bonding schene indicated by OHW is correct. It might be noted thet there are water-cxygen to oxygen approaches that could be ?conceivably hydrogen bended of the order of 3.18 The hydrogen positions do not, however, ndait of such Linkages and difference maps show no significant extra hydrogen density net ascribable to anisotropic vibrations.

Tt will be noted thet the formate hydrogens have enormous tenperature
factors which are equivalent to root mean square amplitudes of vibration
---Page Break---
a
about . 38 , the stereo projection presented in Fig. 1 shows the formate ?hydrogens surroundings are such as to permit a good deal of flapping; i.e. the tgeto other atom distances are elt creater than 2.58

We may then conclude that the Gitydrates unique tydrogen bonding scheme
?and three dimensional formate bridging array may be correlated with the
greater stability of these compounds as coupared to copper formate tetrahydrat

Copper Formate Dinydrate

Introduction

Daring the early phases of the manganese formate vor! Bukawsiastrayzevake published a refinenent of copper formate Aitytrate from three zones of x-ray date, ?The refinement consisted of Fourier projections with ?the Co abstracted. Ho attempt was noted in the paper to either do complete difference mp or to even compute 1 Fe mp to extinate series termination errors. The lov R of «1 was probably ve to the effect of the heavy copper scattering.

Yioted vas the greater aistortion of the octahedron of oxgens about
?copper in comparizon to nickel (Kiroman and Matt
(1965))by elongation of
?two of the six Cu-0 onde (nee table Tia). BS conmelated the elongation of
uO with the elongation of $0-0$ in the formate group. The extent of the elongation noted axounted to -2 and .058 aifterencen in the carbon-oxygen eeproaches th the two formate groups (teble Tia). Such atfferences teply a fair degree of difference of bond character between the two 0-0 bonds in a formate Ion, ?The effect 1 somewhat larger than night be expected froa the differences
between the oxygen linkages to different types of copper orbitals.
---Page Break---
oS

TL, fepults of cu Formate Refinement
or these reasons we rerefined the $x=$ nay data by neans of Least aquares ?using the progran of Roof, Cromer and Larson (195) using a weighting schene of $\mathrm{We} /($ Fo.+ cero? $)\} / 2$ with correction for anamolous dispersion for the copper, the resuite are given in Table llfe together with the results of BS.
?The coordinats
ace translated to the origin used by GH and the atons
relabied for easy comparison with the Hn formate work.
se 6-0 distances in the copper fomate Gilydrate now agree quite well with the 0-0 distances in other fomates, including copper fomate $« \mathrm{Mi}, 0$, witnin the standard devietions of the senate,

5 S reported a 02-03 hydrocen bond of 2.99% 2f the OF related to the © at 2.998 fron Oye by the sexew axis transformation 18 choten, © 2-03 distance of 2.76 R found. This is the hydrogen bonded spproach found in sanganese formate.
ssnyarous Copper Forsate

Ts Introtiction

1h three Ginenatonal Least equares refinesest of the ankydreus copper
fomate x-ray date of Barclay, and
ymnaré (1961) was min using the Roof,
Croner, and Larson (1965)progran. Anisotropic tesperature factors and an empirical extinction correction were included. The results were in very
good agreesent with the Barclay and Kennard fourier results. ?There was,
however, just enough change to bring all C-O distances within 2 standard deviations of the average, confining our results on Copper formate dihydrate. ?the new distances and angles are given in Table Ilb and the positions) end ?thermal paraneters in IIIb.
---Page Break---
TZ, Conclusions
?The general molecular gecuetry of the various transition metal formate inyarates isomorphous with Mn has been determined by the various authors quoted. The study reported bere defined the hydrogen tonding schene, There ?are clearly sone distortions, as expected in the octahedral surroundings of ?the metal ions.

Fine details (i.e, of less than Ca.0.05R) are not established in any of these compounds except possibly the i , It is clear that three dimensional, x-ray counter work and neutron dete on a deuterated compound are needed.
ums

1m our 1966 Annual Report (FRICOh) and in Cromer, Kay, and Larson (1966) ?the structure of the / alum, (C\&AL(SO,,),+12H,0) vas described. Theg, and 7 alise structures as exenplified by My, at Wo,A1(90,,)pr22i,0 respectively, have now Deen completed. The x-ray work was dove by Croaer and Larson at Los Alanoe Scientific Laboratory. Neutron diffraction data vas taken at PeRMCs to Aeternine the hydrogen posttions.
?he Ales are o large clasn of double salte having the general forma AM BP9(ROy)*12iL0 where A can be Wi,» CiisMis, Na, K, Hb, Cs; B can be AL, $\mathrm{Ga}, \mathrm{ce}, \mathrm{Pe}, \mathrm{V}$; R can be $8, \mathrm{Sa}$ or Be .
?Tee compounds are cubte with epace group Pay (240 Table IV). The gross structures were originally determined by Lipson (1935) and refined in the preseat work.
?oe tope of alum formed depends on the aize of the nosovalent cation.

XE the cation is seal the 7 alum forms, ?he only know representative of this class is $\mathrm{NeAL}(\mathrm{Sq}$,)or2H0, The 4 alum forns if the cation is large and
the gi abun, which is by far the most comon type, occurs Sf the cation is of intermediate size, In all the alums there are two erystallovrephically difterent water uclecules, each aszcciated exclusively with either the monovalent or trivalent cation, Tie trivalent cation is always surrounded
by efx water mclecules in a noarly recular octahedron but the orientation of the octanearon with respect to the coll axes ie different in each of the ?three types. The monovalent cation in the gland 7 alune also has oix waters sn a nearly regular octahedron.

Tbe larce cation in Falun can acccmodate 12 oxygen neighbors. Te attain thts large coordination muber the water octahedron is compressed lous the threefold axis and stretched out normal to this axis until st is nearly planer. ?the two ends of the resulting triconal antiprisn are separated by only about 0.068 . ?the sulfate groups at each end of this antiprisn are then moved along the threefold axis tovard the central cation until six sulfate oxygens are about the sane distance fron the cation as are the water molecules. A slightly distorted euble close packed array of oxygens thus surround the cation.
dn the 7 structure oix water molecules epproach the small sodiun cation mich nore closely than in the olstructure, ?This notion cannot tale place unless ?the hydrogen bonding system changes, The most striicing result is that the mulfate groups becone oppositely oriented along the threefold ax

Prom Table IV, ft may be noted that 640 on the three fond (XXX) axis
(vetonging to the sulfate group) is pointed tovards the AT position st $\{a / 2,2 / 2,1 / 2)$ in the 7 alums, but tovards the $A L ? ®$ et the cell origin in oh and Pato.

IT Y-Kum: WakL(50,)9²2H,0
The atom positions found (Table IV) do not differ by more than about
0.058 from those reported by Lipson (1956). The hydrogen paraneters are
---Page Break---
4.
tabulated in Table V. The interatomic distances and bond angles are given in Table VI. The standard deviations were calculated using the entire vartance-covariance natrix and include the Isttice parameter error, However, ?the values involving hydrogen atom positional pareneters fro the neutron
data refinenent assune no error in heavy atom positions.
?The water molecules about the eluminun aton form a perfect octahedron aathough this is not required by the crystal symmetry. Whereas the principal orthogonal axes of this ootahedron coincide alnost exactly with the cell. axe tn edua, and withing « fev degrees ing alun, the octahedron at the origin tn 7 alum is retated by $39,4^{\circ}$ about the threefold axis of the bety

A@lagonal ef the unit cell, The Al-O distance te the suse in both Cs alum and Na alus, The octahedron of water about the sodium atom is somewhat Alatorted by being stretched out along the threefold axis of the cell.
?The angles in the sulfate group depart fron those of a regular tetrahedron by a anal tut apparently significant amount, The differences, for equivalent angles, are in the sane direction ax those in Cx alum although the departure from tetrahedral symetry of the aulfate group in Cs alum vere not significant. The rigid body motion, discussed belov, might well account for the apparent deviation from tetrahedral aymetry, ?The anisotropic thermal paraseters for both neutron end x-rays work are given in Table VIT a and bs
?The anisotropic thermal paraneters of the sulfate group do not seen to be consistent with the rigid body analysia given by Cruickshank (1956).

We might expect a torsional orcilation of the group about the threefold axis.
Hovever, the major axis of the $0,(2)$ thermal ellipsoid, instead of being normal to the threefold axis is at an angle of 65.5°, le believe that this 4 a case in which the translational and the rotational notions are coupled.
?Tims the Cruickshank analysis does not apply. The 0,(2)-0,(2) hydrogen bond

---Page Break---

is fairly short, 2.62 R , and the $0,(2)-\mathrm{i}(\mathrm{lt})$ distance is 1.64%, The principal axis of the 0 ,(2) thermal ellipsoid makes an encle of 04.5° with the $\mathrm{S}-0$ bond and an angle of 79.9° with the O---ti(4) bond, Thus a motion of 0.367%
(the rime, amplitude along this axis) changes the O---i(!) Aatance from OAR to 1.628 , a small amount. However, if this 0.368 motion were to be ddrected along a Line normal to both the §-0 bond and the threefold axis, the O--st(h) atatance would be reduced to 2.538 This sulfate group Mes on \& threefold axis so thet a simple rotation about this axis will reduce three Onnaif Alstances and ve reason that the whole group therefore is forced to translate along the threefold axis vnenever it rotates about this axa.

Figure 2 Sa a stereo view of a portion of the structure, A sulfate group \{2 at the center of the figure and the direction of view is normal to ?the threefold axis and in « plane containing the \$-0,(1) and \$-0,(2) bonds. The ellipsoids have been derived fron the neutron diffraction date and are scaled so that their axes are tvo tines the rime, amplitude, The alunioun ?ston and ite water neighbors 4 s at the top center and the sodium atou with its neighbors 1 s at the left, The notion of $0,(2), 20$ as to avoid the kydrogen neighbor
can be clearly seen, This figure was produced by the 80-020 aiorofilm plotter using a code recently developed by Larson (1966).
?Toe fact thet the thermal motion of O4(2) was fount to be essentially ?the sane from both the x-ray and neutron diffraction measurenents is strong evidence that the apparent notion is not an artifect remiting fron systenatic error in the date,
corrections to the 8-0 bond lengths were computed according to the in phase or "riding motion? assumption of Busing and Levy (1964). The 8-0 bond

Lengths appear to be about 0.015% shorter then those found in Cs alum (CKL)
---Page Break---
10.

Dut Because of the uncertainty in the thermal motion correction the difference is probably not significant, Further analysis is planned,

The 0-H Aistances, except for $\mathrm{O},(2)-\mathrm{it}(4)$, show the usual feature that Donds determined fron x-ray data ere shorter than those determined by neutron attraction. The O-\# bonds in thie structure are ail nearly the sane and 40 not show ary particular correlation of long O-if bonds and short, 0-0 hydrogen Yonda. As in alum, water (1), which 1s associated with the monovalent cation
forms hydrogen bonds that Link $\mathrm{Og}(2)$ of one sulfate group with $0,(2)$ of another. ?Again, as in alua, water (2) forms hydrogen bonds with $0,(2)$ and water (1). In the present cage there is a strong indication that shorter hydrogen bonds
tend to be more nearly Linear.

TIT qh, -Abuns ND,AL(S04)p*22020

Deuterated exnoniun alum wes selected as and alu: to study by neutron ?The hydrogen atcus in the vater aolecules
diffraction for several. reason
could be loceted accurately, In addition the nature of the disorder of the amoniun ion, which mist exist if the space group is to regain Pa , could also ary average centric
?ve determined. ?The amoniun ion can attain the nei aymetry by rotating freely or by randonly assuming either of two orsentations.

Tt was aleo of interest to verify the sulfate group disorder found by Larson ?and Cromer (1966) by means of x-ray diffraction and to determine whether any
water molecule disorder is coupled with the sulfate disorder.

Refinement of the structure

A funn ntrix least equares refinement including anteotrente temperature factors was carried out, This refinenent led to Ra9. $2^{\circ} /$ qy $A B$ in the case
of the x-ray xefinesent, the thermal paraneters for the sulfate oxygens were
---Page Break---
quite large and quite anisotropic. Other thermal parameters behaved normally. ?ane ellipsoide are scuevhat snaLler then those obtained from the analogous xeray refinenent of ordered Mii, alun but the directions of the axes are in good agreenent for the two case
?A \&igference Fourier clearly revealed ssall peaks fron disordered sulfate ?oxygen atons, A model with a fraction, k, of reversed sulfate oxygen atons was then refined as in the x-ray refinenent of K slum (Larson, and Croser, (1966)). Hovever, no attempt was made to displace /2 ND, groups along the threefold
?exis ao vas done for the potassium atom in K alum, This additional disorder
would have introduced too many highly correlated paraseters. Anisotropic
?thermal parameters for the reversed axygen, $0 \mathrm{~g}(2)$ ', ad not renain real 20
fined refinenent was made vith the reversed oxygen ators isotropic and all
other atons anisotropic. ?The final R index was 8.4%., The final pareneters are given in Table VIII, The disorder parameter 1s 0,116 1'0,c22 in good agreesent vith the value indloated by the x-ray date for My alum, In the

Tables V, and folloving, the symbols $\mathrm{Og}(2)$ ' and 09(2)' are used for the reversed sulfate oxygen atons end D ' ie used for the half deuterium atoms in the disordered ND, group.
?the various interatonie Gistances and bond angles and their standard deviation are given in Table IX The anisotropic thermal paraseters were transformed to obtain the thermal ellipsoid parsneters, vhich are given in Table X. ?The O-D bond lengths have been corrected assuming that D rides on 0 (Busing and Levy, 0964)), Ho such corrections were made to 9-0 and N-D ends becuse of uncertainties introduced by the disorder,

Agreenent of these distances with those fron the x-ray study of the tums (Larson and Croner, (1966) is reasonable except for three striking
exceptions. ?The 0,(2)-04(2) and O,(2) hydrogen bond distances are both
about 0.05 R longer than in Wii, alum. ?The Al-Oy(2) distance found bene \$s 1.065
augné $0,008 \mathrm{R}$. r¢ these aifterences are real, they mast arise fron an isotope
0.005 R whereas the analogous aiatence found ty xrays An Mi , chim Se
eftect. To settle the question, an x-ray study was made of deuterated amonius ?elun and a refinesent ves made exactly as hed been made for Hi , eum

19 were no significant differences between these
(uareon and Cromer, (1966))- The
xeray studies of Mi , and WD , alums,

As another check to determine if ve had systematic errors in either our xeray vork er neutron work, the neutron data for Ne alum (Croser, Key, and tarson, (1966)) were refined while letting all paraneters vary. (In the original work beavy stona had been held in fixed positions for the neutron refinesent). Unfortunetely only Limited three-dinensionel date were available and there were only 144 observations to determine 7h parameters, Nevertheless the refinenent ?converged axttafactorily and the parameters did not change very mich. The
remuiting A1-0,(2) Atstance vas 1.67910 .014 , An good agreement with the x-ray
value, In this case no aystenatic difference existed in the two techniques.

We believe that the nost Likely reason for the difference between the
preeent neutron remults and the x-ray results is thet the model used for refinenant does not preyerly eccaunt for the disorder. Thus, the systenstic error existe in the least-squares model and not in either of the experimental: methods, No provision for positional disorder of the nitrogen atom in the emonium ion was made in either refinement, In the refinenent of K alum the potessiun aleorder was coupled with sulfate group disorder, Weglect of this aduorder would have a mich greater effect on the neutron because the deuterium contributes « large anount to the scattering wheres the hydrogen atone are practically negligible in x-rey
results are probably correct and the neutron resulte are in error.
?attering. We therefore reason thet the x-ray
---Page Break---
itterence Fourfers revealed no significant features and there 48 no Gvieence for water discrder coupled with sulfate grow disorder, Further, there

0 no marked anisotropy in the thermal notion of the deuterium atons which might euggest positional disorder. As noted by Croner and Larson (1966) the mafate oxygen atom can form hydrogen bond with the sane fydrogen atoms whether the exygen aton is in position 0 ,(2) oF $0,(2)^{\prime}$ '.

Ime two ep distances in the ND, group differ ty 0.0868 but thts difference is probably not real. The longer distance has « large standard deviation and further there is the possibility for some positional disorder cof the 1 m , group coupled with the sulfate group disorder, Although the therm ellipsoid of the nitrogen aton suggests this possibility, the ellipsoids of the deuterium do not. The ND, croup perhaps has to aove very Little to
accomodate the reversed 0,(1) atom because either an 0-

Doli hydrogen bond
?can form (the O---11 distance ic 2,648) or the Van der Waals radius of the nitrogen aton is smaller along a symetry axis of the I, group than in other atrections.
?The O-D bonds of water (1) are significantly shorter than those of vater (2). ?Tie difference ie related to the strength of the hydrogen bonds, the shorter O-D bonds being associated with longer hydrogen bonds, The shorter hydrogen bonds also tend to be closer to Linearity.

A stereo drawing of a portion of the structure is show in Fig. 3. The aumonium ion at $1 / 2,1 / 2,1 / 2$, (4 n Sts two orientations) is shom with its six yater nesgtiors in the lover right front. The octahedron about the aluminus ?at 2/2,0,1/2 48 shomm at the lover left front. ?The sulfate group (in tte normal orientation only) ie in the middle. All water molecules hydrogen Donded to the sulfate group are show.
---Page Break--athe

Except as noted below, all calculations were performed with en TE¥-709\% using codes written by Larson, Roof, and Cromer (1963, 196\%, 1965).

Magnetic Structures
I Introduction
Recent miclear magnetic resenance measurenents by pence, Miédents, Mi Saffar, and, Kleinberg (196+) have confirmed that CoC,? 6 Hg 0 and MCL, 6,0 are antiferronagnetic of point group $2 / \mathrm{ml}$ at Liquid helium temperatures,
?and that each salt has one of three possible magnetic structures

In order,
to uniquely determine the correct structures a neutron diffraction study was
required, The results of auch a study ere described in the present report.
Crystale of NiClg?61,0 and CoClg' 61,0 are monoclinic, and according
?to Mizuno $(2960,1962)$ belong to the apace C2/m There are two molecules
in the unit cell, For the nickel salt a-20.25A, De7.05A, o-6.57Ay and
f-122910!. For the Co salt anl0.34, b7405, 6.67, and $212^{\circ} 20^{\prime \prime}$.
?rhe metal ions are situated on inversion centers at the cell corners, end
at the centers of the $a: b$ faces, They are octehedrally coordinated to four coyeen and two chlorine atoas a8 shom in Fig, 4, These oxygens form \& slightly distorted equare, with the cations at the center, while chlorines are Located on the two normals to the oxygen plane. The renaining two ater molecules of the formila unit are located in the mirror plane end are relatively free, but do take part in the hydrogen bonding schene.
?The Local magnetic fields st the proton positions have been measured ?by epplied and zero field mar methods at 1.1% ty Spence, Middents, El Saffer, and Kleinberg (1964). By applying magnetic symetry theory to these data, it Se found that the yosetble magnetic space group aysbola which describe the aaguatic ordering are $\mathrm{P} ; 2, / \%, \mathrm{C}, 2 / \mathrm{e}$ and $\mathrm{T}, 2 / \mathrm{c}$. Chearly, $\mathrm{O} 2 / \mathrm{e}$ and $\mathrm{T}, 2 / \mathrm{e}$ are
equivalent, but generate different structures vhen applied to en axial vector
---Page Break---
-5-
tn a cles copoclinte cell. Conditions for magatic Bragg sxattering fro the (102) rone, for the three different structures thet are gnnerated by seplying each of these eythola to the unual monoclinis cell, are that By $£$ be edd-even, evennodd, and odd-otd rempectively.

HE icles 60
single crystals of $\mathrm{Hici}, / 65,0$ grom fron aquecis solution at shout $30^{\circ} \mathrm{C}$ had the habit deseribed by Groth (1906), An epproximately cylindrical crystel vas surpended frca « titantis-sircoaiu crystal oust that was attached to the tall of ofean devar. At 4.2\% the crystals was aligned, end mueleer ?peace were neasured on the (10\%) rone to give a set of eppraxinate unit colt Aimanatons.
?h subsequent search for magnetic reflections showed that the spect Group a Tqo/e, with the magnetic structure as given in Fig, 5. This structure consists of antiferrosagnetic (O01) planes with an antiferrensgnetic coupling petween planes, to give a magnetic cell that is tice the size of the chanical cel, along the © xt .
the angie between the spin direction and the afeci axte was deternined us that angle which produced a mintmm value for the function BEIF, - Fel Te wes found to be $22,5^{\circ}$ from the a! wis towards the a axis, with a standard
deviation of about L. 0°, the cbeerved magnetic form factor values of HIE " fare mom in Fig. 6, The sclid Line 4s the spherical part of the nif form factor, calculated by Watson and Freenan (1961), and is seen to give 8 good fit with the date.
mis result differs from having a apin direction along the a' exis as as been proppsed from auscoptibility, measurenents by Reseda, Kobayssht, and, Date (1959) and, FLippen and Friedberg (1960). On the other hand £* 1\#
---Page Break---$-16 e$
$\$ 5$ good agrecaent with the results of the antiferroagnetic resonance and napwtic tongue seasurenente of Date (1965), who has found the spin easy ais to be $25^{\circ} 45$ trom tho

HE Coty: StiO

Neutron diffraction date beve been taken at 4.2\%, and 25\%, on the
(oR) tone. only reflections of the type osd-odd, were observed therefore, ?the space group 4s I,0/e and the structure, except for spin direction, 1s as shown in Figs 5.
?Thin magnetic atructure consists of antiferroaagnetic (OOL) planes, with an antiferromagnetic coupling between the planes, to give a magnetic cell that is double the chemical cell, in the Φ direction,

As the miclear intensity date have not yet been refined, the set of experizental structure factors was scaled by dividing each mumbor of the set by the sun of the set. Tho observed structure factors vere then compared to acts of calculated atructure factors, watch were sealed in the gane way. Tre angle between the spin direction and the c axis, is defined to be thet angle at which JiP. - Fel te minimus, This angle ves found to be about 25°. there say be quite \& large standard deviation on this angle, as it was quite difficult to determine the beckground scattering at 4.2% The form factor curve for this angle \{a shom in Fig, 7. We note thet the path engin for (202) was quite iarge because of the crystal ehepe, thus giving ?the lov observed value, The reflections (105) and (305) which have such large error flags cleo have intensities that are only about 3%, of the largest observed intensity.

IV Conctust

?There are four possible intreplaner superexchange paths in the cobalt chloride hexehydrate. ?They are shon in Fig. lb, The paths 1-5, are
ntially the sane as in cobalt chloride dihydrate, where they serve to
---Page Break---
-r-
imterlin: the strongly coupled ferromgnetic chain

In that case they have
?the sualler exchange energy. Short renge order is attributed to the strong
$\mathrm{Co}-\mathrm{Cl}-\mathrm{Co}$ intrachain coupling. ?The magnetic structure does not stabilize unti2 the energies of the paths 1-5 predominate over the thermal enersy. This occurs at about 17.5\%
$4 n$ the case of the cobalt chloride hexaiydrate, there ie no strang
Conctaco coupling along the axis. Instead, there is the very weal: ?0-0;-0;-C0, ?coupling along path 5 in Pig, . Thus in the hexahyarete we expect antiferronse-
netic sheets to be formed in the (O01) plane, at about 17\%, as a consequence of the paths 14%, As the temperature is decreased there is inerenaing short range order until about $2,25^{\circ} \mathrm{K}$, where the woal: in interplaner forces bring ?turee Ainensional stability to the structures
?This conclusion is 1 ustrated in the specific beat date of cobalt chloride hexatyérate, as measured by Robinson and Friedberg (1960). They found in these ?that approxinately 52% of the entropy of the transition was obtained above the Noel tenperature, and it ie seen that the Lintting entropy Rin 2 is reached in the vicinity of the aitydrate's sleel temperature,
xcept for the difference in epin direction, the magnetic ordering in

Micip: 6110 is the eane ae for the CoClp'6\#,0. The spin direction for the former
sat 1972.59 from the a! axis, and for the latter salt is approximately along ?the c axis. ?This, changing the cation is these two isostructural salts does not change the magnetic ordering.

Tt \$e of interest now to study the antiferrongnetion in HBr 6 H 0 , cconry-61,0 and WiCig" 2 Hg 0 , and At ts planned te do 40, ocene available.
econ as the crystals
ote: ?The experinental data for the Yagnetic studies on Co and $11 \mathrm{i} \mathrm{Cip}+6 \mathrm{H}, 0$ vere taken fat the U.S. Haval Research Reactor and anelyzed and interpreted at PRIC.
---Page Break---

Ferroelectrics

In an effort to provide the solid state physiciat
st PARNC, (and
other Laboratories) with the etonic gecustrical knowledge with which to Anterpret their electrical measureuents, the crystel structure determinations of several ferroelectric compounds of interest have been undertaken.

I Wad,

Data has been taken on NeliQ, about $15^{\circ} \mathrm{C}$ below the transition texperature.

While a rigorous analysis avaits further date correction, preliminary results do not seem to indicate any strongly preferred vibrational mole that would account for the phase transition, Such motions my shov up after an extinction correction is made or at higher temperatures. Data will be ?taken at higher temperatures

TE tasis(se05)2
?The room temperature structure of Halis(se05), has alnost been completed. Preliminary results show that the heary aton positions determined by Unteriitner (1966) are correct and those By Chou and Chotang (1957) contain errors, Hydrogen positions will be available shortly.

HII H4,(8005)2

Preliminary measurenonte
how HHs('S605)p space ereup Poe with ax6.32,
Brl6.11, ox6.24, Zab molecules/unit cell.

Liquid structures
Tt was hoped to determine the structure (coordination) of molten S0C2y.

If aifferent ioctopes of Sn with substantially different scattering lenet
may be used, then the neutron diffraction patterns may be combined to yield separate parts of the radial distribution function.
---Page Break---
age

Moamurenents have been made of the scattering Lengths of all available Asotopes of Sn These are: dé =,5002, DT = ,64£02, De 50 t

V0 650 fon, $D e=604.00, D O=64$ Yor, $D e e=155 \mathrm{t} .05$,
wi\#* $^{*}=459.02$, the above Ssctopes account for $96^{\circ} / \mathrm{y}$ of the Lsctepie entent of natural tin, If only dsctopic inecherence is included the total scattering
cross section is $4,62 \times 10^{\circ *}$ on and the coherent eross gection 4,6LI10"\%em, Measurements given in Bacon (1962, Neutron Diffraction) indicate 4.9 and 4.6 for the above cross sections, respectively, While the former figure may be fue to experinental error, there is also a possibility of miclear spin incoherence, If this is the cast
the effect should be fairly substantial
Decause odd muclet account for only about 15% g of the total natural sactopie abundance,

Becmuse of the closeness of the scattering lengths of the Sn Ssctopes to each other it was docided to pursue the quid work with Ou Oh using Cu , ow, cuPS, ci, $1^{\circ}, \mathrm{c} 1^{\circ}$? which have soattezing longthe of $« 79,-67, \mathrm{Ld}$, $+\%, 1.18, .26700$ en, respectively.
---Page Break---
ECEESE RE RE RERPREG
-20-
feble-I

Structural Parmmeters for Vin Formate «
? are given first, folLowe

Parameters from neutron data

Sckay parameters (Oi) in parentheses.

Gy , and Hi , are vater oxygens and hydrogens, respectively
x
。

6

+ 0564, 0015 (038)
-3265t. 0012(.325)
09854, 0012(..096)
+0868, oon2(..084)
sWshat, 0012(.439)
$+2035 \%, 0016(.213)$
«2700, oon (.267)
4az0t, 0015(.420)
x
。

3
«P23ut. o019(-220)
61344, 0017(.622)
+2067t, 0020(-102)
+2682, 0021(..266)
Text. 0021(. 723)
-6565t, 0019(..656)
+8262, 0020(.485)

2

。

。
-27agt. oon5(-274)
hszet, o0n2(.435)
$-2035 \% .0013(.204)$
hoot, 0012(.398)
-ke0bt, o0n2(.420)
926 0028(.49\%)
+0656, 00n5(..066)
+2958. 0015 (.296)
+227, 006
+3958. 008
+051, 05
0091.008
-2614. 005
ake, 002

Ja by standard deviations followed by

B
a.283(2.2)
2.42.5(2.2)
2.78.3(2-2)
2.2\%.2(2.8)
2.1t.2(1.8)
2.2t.2(2.7)

2,54.2(2.3)
(1.5)

Pat
2.24.3(1.8)
3.08, 3(2.4)
ete
6.38.9
3.945
3.98.6
3.285
---Page Break---
a
?ape 118

Bond Distances and Angles in Manganese and Copper Fornate Ditydretes with Standara Deviations. X-Ray reaulte for i (Oifl) and previous X-ray refinesent of the copper compound are given in parentheses. Corrections to bond distances \{nvolving hydrogens due to the H "ricing" on the Oxygen are given in brackets.

MANGANESE COPPER

I Metal-Oxygen Octabedra
m0 eaietoe (2.15) 2.30. xb (2.26)
m-ce 2.135\%017 (225) 2.982, 026 (2.02)
mao Bento ? (222) 201s. ony (2.01)
o1-sa-ce ites (7) o.ab7 (90)
o1-a-08 hts (80.2) eu 5 t6 wo
conna-ob eats (03) 6.82.7)
12-05 aaigte.3s (2.22) 2.364.019 (2.35)
1-4 2.21St.or3 (2,24) 2.0Mbt, 017 (2.02)
12-02 2.165t. 05 (2.36) a.97ht. 5 91)
OHO 6.64.5 (1.0) 81.6.6 ()
Osa 2 t9.rh6 (2.8) B96 wn
tee 69.085 (09.8) en5t (69)

IX FORMATE GROUPS

co 1,264.02 (22) 1,261.05 (2.29)
c1-ce Leite (2.25) 2.30808 (39)
ca-ca-ce qak.5t. 2 (226) 2 (2)
tpl 1.054, 052.20)

OL-ch-Hpl 126. 545.8
cencheFpl 126,.983.8
---Page Break---
te.

Table Tia Contd.

2-03 azstce (1425) 1.26405 (uz)
$\mathrm{C} 2=041.26 .02(\mathrm{u} 21) 128,05(2)$
2tig2 05 (2.06)
$05=C 2=04123.0814$ (123) azote (aah)
052g mister

ObacBatig2 1ag.5t2.2

TXT HYDROGEN BONDS AND WATER MOLECULES
ota Loot ob [2402
a2 934.08 nay

HOH aoste
ano aphce (213) 2.7oh02 (2.85)
Hal-ob Lptos
a, a-i-08 asots
aoe 2.19 .08 (2.81) 2.tat.oe (2.62)
y2-0e 2.008.053
oa-ii2-02 arrts

Opts 1954.05 (961
othe $098.05(-09)$
wpa 07582.3
ozo (2.61) aris (2.79)
OL 1.864.05

O2-HyS-O1, viet

02-05 2.75t. 02 (27) 2.67802 (2.76)
ORE 1.86\%. 05

OyarHy05 arete
---Page Break---
3.
?Table Ile

Bond Distances and Angles with Standard Deviations in Anydrous Copper Formate
?Old Keray refinenent results are in parentheses

TONS DISTANCES STANDARD
DEVIATIONS
cu - 1 Lesh (2.985) +009
cu - 2.939 (2.982) +008
ca LgvL (1.986) +007
$\mathrm{cu}=\mathrm{L} 952(2.98)+009$
ou - $2.415(2.391)+008$
cu - cu 3.432 (3.035) +005;
a-o 2.2k3 (2.255) Os
ao $2.269(1.295)+03$,
2-02 $1.250(1.270)+035$,
$\mathrm{ca}=\mathrm{ob} 267$ (2.208) ok
a1-cu - ce B34 (U9) 35
$=\mathrm{ca}-98.9$ (95) BD
ceca oh 9 (69) oT
$>=$ cu ob 81.8 (66) 235
a-a-o 320.9 ze Lo
$=$ co- h 323.6 ze ua
---Page Break---
the
?Beble IIT

Rarefined Peranotyers ond Staugara deviations from Yeoray Date of
original paraasters in parentieses

Atos x y 2 B
ou, ${ }^{\circ \circ \circ} \mathrm{hia}$
owe 36° uta
a -022,005(.055) zat. ood(.2n7) ??«2964.003(.302) EES.
ce w322t,005(.303) «6064, 004(.600) «Wast.o0R(.422) 2a
a +Op't.o0e(.098) teat. oce(.096) «zat. ooe(.223) 205
oe 20U5\%,000(.007) 264. 003(.267) sant ove(sbai) 93
3 s430\%.002(.425) « 7058.005(.705) «HOR\#, 000.405) 2.683
oF +20KE,002(.204) «35\%,003(.356) saKE.O0n(.495) Leeks
oa .2.5t,002(.209) hgh 002fshub) 0754. 002(.075) 2.383
oe wast ov\{4ia\} Bow 00a205) ssa5 one 3.36) 2 h
---Page Break---
?Table 111
nefined Parqueters and Standard Deviation fron X-Ray date of Barclay and Kennard Original Paraneters are in Parentheses
x y z
$00+2150(.1252) .0002+0587(-0506), 0008+0062(0065) .0005$
$a+0292,(-02 u \%) . .00013254$ (.3226). 0254.2614 (.2625). 00
cy $+2172(.2710) .000-1540(.1595)-0015+2549(-2536) .0082$
$a+0096$ (095). $0005+2433$ (.2427). $0009+2605$ (.2622). 0008
ce +2225 (2285). 000610215 (.0262).00L0-195. (.1950)-003
${ }^{\circ}+0070$ (0061), 0005 +0(U4 (.07U2).. 0009 ago (.2902). 0012
oe HUB (,2493). 0005, e121 (-12207).0009-+ $1869(\sim+1459) .0025$,
?Thermal Parameters
po fa po fa Bs fe
ca oon 00h. $2070002=, 0005+0006$
ot $+002800 \mathrm{~K}+0066=.0007+0021 \sim-00 \mathrm{~s}$
$20005+008+0103,001 \mathrm{~g} .=, 0008+0085$
a $001 \mathrm{~g}+004303900 \mathrm{a}=, 0015-.0029$
cy $+0021008 g+01050002=, 00 \mathrm{~K} 0024$
$3+0004+005+0083,10051=.0024-.0002$
$\mathrm{ob}+00 \mathrm{n} 4+0087+0196+0002+002+0005$
---Page Break---

Table 1V

cent Date and Heavy Atom Parameters for the Alums Studied by Neutron Diffraction (in order of +1 cation size)

Sample 0AN(S0y)o-12H,0 ??ND4AL(SO,)g- 21240 CAAL(SO, pr 120 Space Op.
® was 32.352
GLE) ? $(65,05,-3)$? ? ?
$(4,752) ? _(\bigcirc, 0,0) ?$
3(4,\%,\%) $2652+5090327$
C2) (sie) BAS 24082596
og(2)X 295\% opae +2009
y 2105 260\% whan
2 saubt ans 36
aytayx $+0167+0456--1595$
x + oho; $305+9507$
25182510 28h
ofa)x ?Ba sone 3s
Y +9596 ~ 0069 -. 0080

Zz +9573 $156+0000$
---Page Break---
2
rey

Hydrogen pareaeters in Hak1(50)p.12\%i20 from Least squares
toa
QQ)
$\mathrm{Ht})$
(3)
(4)
refinenent of neutron diffraction data,
$0.5958(21)$
0.4 709(22)
0.5504(25)
0.5926(21)

Zz
0.5272(20)
$0.3225(21)$
$0.203115)$
0. 3822(15)
0.3665(21)

0, 3808(20)
$0.4999(2)$
$0.2204(25)$
---Page Break---
28.
?Table VI
interatomic distances and angles in 1eA1(50, \}g-121.0 standard devietiont, in parentheses, apply to the Fightnost digit

Distances corrected for thermal motion wre in parentheses
Distances end angles frou neutron date are in underlined.

12-65,(2) 1.881(2)8

?The sulfate group

8-09(1) 46a (4)
(aks)
'8-30,(2) ash (2)
(48)

4(2)-30(2) 2.589(4)
04(2)-20,(2) 2,366(4)
eter molecules
(2-02) 0.184)
2.915(24)

Gov)
$\mathrm{o}(2)-\mathrm{H}(2) 0.05(4)$
0,991(24)
G54)
4f2)-H03) 0.924)
0.916(27)
(009)
ay(2)-t4) a.01(s)
$0.991(20)$
1.006
\{2)-A1-04(2)

O42) -Ad-04(2)
$y(2)-\mathrm{He}-0,(2$.
4 (2)-ta=0y(2)
$05(2)=8-04(2)$
0¢(2)-8-09(2)
$9(2)=04(2)-04(2)$
$04(2)=04(2)-04(2)$
Og(2)-09(2)-04(2)
$H(2)-04(2)-H(2)$
$u(3)-0,(2)-1 H(4)$

90, 0(2) ${ }^{\circ}$
90, 0(2)
85.0(2)

95-02)
aa0.a(2)
108.9(2)
60.0
60.3(2)
59.42)
20302)
---Page Break---
Hydrogen bonds
$a(2)-30(2)$
$0,(2)--3 H(2)$
$\mathrm{Og}(2)-0,(2)$
(2) $-2(2)$
$o g(2)-04(0)$
(2) $-\mathrm{H}(4)$
(2) $-04(2)$
(2) $-\mathrm{H}(3)$
29.
?Table VI Conta.
2. $\mathrm{TH} 7(4) \mathrm{g}(2)-\#(2)-04(2)$
2.703(25)

2,822(3) (2) -H(2)-94(2)
$2.901125)$
2.605(5) og(2) -1(4)-04(2)
1.655(20)
2.64903)(2) 83) -04(2)
2.613037)
16005)
3563)
aik(2)

376(2)
---Page Break---
Atos

Ha,

09(2)
$0,2)$
(2)
a,(2)
? 30

Teble THe
?Toermal elipeotds in Tak2(50y Jp 2250 from X-ray data

Standard deviations, in parentheses, apply to rightsont digit

Direction angles relative to crystel axes
ne
dap Tate \& < a x
$0.270(5) R 2,26(23) R$? shee he? shi?

0,160(3) 2.55(8)

0,160(3) 2.55(8)
oat\} Re 5 he 7 he She

0, 14043$\} 1.54(5)$

0,140(3) 1.54(6)
cable) 265) oe
a 3 \} ei ais?

113(7) 2. 36(393 Sh ST shy

2a BB)

0: or 2ehh\} 10.62(21) 2a\} 115(1) h(a
orients) 200\} ua 88) tt
+h, 76(26) 43) 133(2) 98(5)
$2.63(12) 53(6)$ ato ag 3
0.27a(4) 2. 34(12) au(u) 12e(10) ?ho(6 |

T 6) 61
SH ERR I a\} Sif\}
0, 206(5 | 3.35(10) 95(4) 568 Bath)
---Page Break---
ae
able VITO
?Thermal ellipsoids in $\mathrm{MeAl}(\mathrm{SO}) \mathrm{p}-$,12120 from neutron diffraction date
Standard deviations, in paréntheret, apply to the rightmost digit

Direction angles relative to crystel axes

2S
Aton pplitede BL L a 2
Ma 0.05(24)R 0.5025$) R^{*}$ shi? she hie
$0.20(6) 3.3(20)$
0.2016) 3:3(20)
a $0.4 ;(20) 2.3(20)$ she hi she
0,0:20) 2.5033
@.05(40) 0n5(a5,
8 22M 3 1.529) sh het sh
ol20(h) 3.502)
$0.204) 5.5002)$
1 0.2065; 5-2(36 Shed MT SAT
oat) 00$\}$ a3
onan(5: w50a)
o,(2 0.36(2 n.6(35 21a 234) 76(5)
fe) 355$\} 2.33 \mathrm{a}\} 30(20)$ 204(24)
. 0-10(8 0.816) silt) a3) 20(20)
o.20(2 3.010 aué7) (aT) 86(59)
iil aaa\} 3h\} Sie\} ?Bae owe\}
Ona L6(6 913) 0047) 2209:
20.1231 .216) 364) aaah) 306 (24)
owe) oH Sun 36033 ae) (55)
orb: 2M) we 105036) xe)
\#Q) 0.324) 8.3(20) 23(20) 9n(26) 61(20)
ovzats) 3.0035 , 901238) 2(5310) $80\{539)$
212500) Bots: $1 \mathrm{i}(20)$ athe) 23656)
\#2 0.35(4) 9.4(22) mwas) 0035 1)
oz tisha
0.1465) 1.6(32) aah) a1) tea)
6) 0.20 (3) 3.3 (33) elee) ?ate0\} 201139)
508) an9) S345) pha 3109
$0.21635 .834) 65 \mathrm{a} 6 \mathrm{o}(\mathrm{a} 5 \mathrm{ie2}(\mathrm{a} 2)$
0. $22(3 ; 3.9(20) 29(299) 5705) a(S)$
i) ova 3 3.5(02) 37488) 5513$\}$ 89(87)
o.22(h 119) 65(29) 39(a7 46(a7)
---Page Break---
(oLyre- (ga)ozt? (6a)egt- ae)nee ?Cn)96S (BE)LOH
(966 (LYS ? (EnJens (YAS (ED LOE
(g6)e08-3 (?s)ocL?(Ano6n??(esoeL
(lero ? (@a)6i2- (96)CET- ?(6S)9L (659669 (an)ets
(esr (syn get (East 96602 (ETEK
(cunt (6LJowe(ULYEHT (Seen (BEEK Cone
(onort
(Fours (seple (oor)90¢ ? (en) see $=(9$ LYELB? (Gn)
' (eed
ba ty (eorex \% (es)t99
my ye eotst sy (endone
(6669 (962)k2 (6te)Nee ?(noa)OGeT (Late ?_?(28T)96
ety ay (oscjese- Ts (eer eset
ty sy (Gor)obt wy Ts (cages
my ey (ootdoct- \% (ondont
gry ex rx ote ore (new
exe
(siK6r6"0
(6) 00
(9)erge"0
(5166270
(ge)enée"0
(yxét9ro
(e2yatsro
an

。
(S)p2n0 ${ }^{\circ}$
(ge)sticro
(e)6192"0
$m L o x L x t$
(er)segsro
alt
。

Z
a19Tp eomUsya 9104 Arde ?cosayyuared uF ?suoTINTASD BIVENS

0\%aat-?("os)tv"an 105 sxeyoeured sarenbs 3009]

ILIA a1eea
(ez)gtt"o =
(s)gsetro
(n)lz02"0
(g) $\mathrm{t} \times 00 \mathrm{O} \mathrm{o}$
(9)<gtt'o,
(s)oLto ${ }^{\circ} 0$
(a)igror0
(ec pntero
(o)eere-0
(ogyasiero
Oa
(g)rore"o
(6r)S084"0
(rayeuryro
ant

。

X
e

?Tabte Tx

Intevetcnic distances and bond angles tn 10,40(59,);
standard deviations, in perertheses, appay to the rightaoet eight
Distances corrected Fer thermal ceviow are in parentheses
a6 0,(2) 1.065(5)80,(2)-41-0,(2) 90.6(2) ${ }^{\circ}$
,(2)-A1-0,(2) 03.2(2)
6 Oh) 3-057) (2-8-0, (2) Toe2(1)
$0,(2)-1-0,0)$ 204.00)
¥.04(2)! 2.64(13)
§D, croup
$m-2 D(1)^{*} 1,204(45) D(1)^{*}=H=D(2) 102.8(4)$,
w~60(2)" 1,016(16) ?D(2)*t-D(2)* 15.99)
80, group
$8+05(2) 2-49(2) 04(2)=8+05(2) 109.4(6)$
8-0,(1)' 21439(23) 0,(2)=8-0,(2) 1109.6(3)
$8-0,(2) 16443(9) 0 g(2) "=8+0,(2)^{*}$ oe(2)
$8+0,(2) " \mathrm{sba}(4) 0,(2) \mathrm{H}-8-04(2) \mathrm{a6}(2)$
Water molecules
Q(2)-0(1) 0.934(9)8 (2)+0,(1)-D(2) 106.19)"
(0.965)

0, ,(2)-D(2) 0.954(9)8
(0.97\%)
$0,(2)-D(5) 0.993(7)(3)=0,(2)=D(4) 12106.2(7)$
(2.008)

04(2)-0(4) 0.908(7)
(2.005)
---Page Break---
og(2)93 0,02)
$9,(2)-{ }^{\circ} \mathrm{D}()$
$05(2)=04(2)$
0,(2)-0(2)
09(2)-0,(2)
o(2)-0(4)
$0,(2)=04(2)$
$0,(2)-\mathrm{D}(2)$
0(2)"-04(2)
$0,(2)$ '-D(4)
9,(2)-9,(2)
0,(2)-008)
he
?Table 1X contimed
2.T1e(a2) $9 \mathrm{~g}(2)-23)-0,02)$
2.06321)
2.7119) $0,(2)-D(2)-0,(2)$
2.652(20)
$2.6178) 04(2)-D(4)-0,(2)$
1.643(9)

2,05(4) og(2)*-D(2)-0,(2)
1.99(4)
2.714) $0,(2)=D(4)-0(2)$
cat)
2.652(9) 9,(2)-D(3)-0,(2)
1.662(9)
163.6(9)
168.219)
269.17)
3512)

62(2)

1ihe(6)
---Page Break---
?35+
rabie x
Thermal ellipsoids in ND,A2(S0,), ${ }^{\circ} 220,0$
Standard deviations, in parentheses, apply to the rightmost digit
rea. 0 . Direction angles relative to cell axes
Aton haplitle y a ${ }^{\circledR} 7$
$¥$ wex(2)AM2T)AP hee oh mT
8) 2.703):--
80) 2.703) : : -

Da)! 285) 6.0023) ST ht oht
223) 8.3027) --
$+32(5) 8.327)^{*}--$
$D(2)^{*}$ se7te) 5.79) 2825) rar) 222)
wee) -3.6(8)? 20719) 37(20)??90(a7)
$\mathrm{s}(2) 7.812)$ 6920) $\times(\mathrm{a}) 2222)$
a $0 x(28) ? 0$.(6) SHAT 7 ut
22) 1.24) - - :
22) 1.204) - : :
s 0.183) 2.58) ST MT SMT
one) 1.004) - - :
0.1(2) 1.04) :- -
002) nse) .6) OT ot MT
0.25() 5.05) : - -
0.25(1) 5.065) : -
o,(2) oar) 2.203) 336) 303(6) 287)
22) 5.706) 6(4) "6(3) 624)
0.09(2) o.(2), (7) 1224) 316)
(2) ovena)?5.6(3) 308) 726) 218)
$0.2 \mathrm{~K})$ 1.62) ? $\quad 98(28) \mathrm{zo}(12) \mathrm{T} 2(20)$
$0.16(2) 2 .(3) 4820)$ sete) 34)
oy@) ora) eee) 337) 9x27) 029)
os) 1.8(2) 8927) 30(24)??200(23)
0.10(2) 0.8(2) mn x(a) 26(8)
---Page Break---
om
pa)
(2)
(3)
$D(a)$

Jeph tate
$0.1802)$
0,22(2)
0.26(2)
$0.2202)$
$0.2702)$
$0.2703)$
$0.15(2)$
0,20(2)
$0.22)$
0.16()
0.20)
0.18(2)

Table x continued
2.43)
4.063)
5.5(8)

3-9(4)
2.63)
5.108)
1.12)
3.1 (5)
346)
2.0(2)
3.66)
2.6(2)

3360

Direction angles relative to cell axes
@ B
holo)
e9(9)
(6)
4×9)
\#300)
232(8)
$\operatorname{ar}(\mathrm{s})$
207(8)
75)
o(an)
16(8)
59(26)

63(8)
$4 \mathrm{e}(\mathrm{aO})$
$\operatorname{aer}(9)$
asco)
20(6)
207(6)
7318)
alto)
sia)
?itao)
29(20)
65(a2)

7

62(6)
67(a1)
(6)
sx(9)
(6)
$r(7)$

0e(7)
325(li2)
36(40)
329(27)
yo1(20)
na(a7)
---Page Break---
20.

37-

RECRENCES

Abe, He, Morigali, He, Matewura, 14, Toril, Ke, Yamagata, K., J+ Physs Soc.
Sapan 715 (1964)

Barclay, G.Ae, Kennard, C.H.L., J. Chem Sor 3209 (1962)

Puckews!
steayzewsiia, Ye, Acta Cryste 19, 357 (1965)

Busing, WR, Lew,

Ae, Acta Cryst. 27, 1b2 (1965)
Chou, Kud+, and Fanc, YoChe, KO Hovek Suns Pao 299 (195\%)

Cromer, Kay and Larson, Acta 0:

+ An press (19660)

Cromer, Dots, Kay, Mole, and Larsen, A.C. Acta Cryst, 2233 (1966)
Crusevshank:, Dnt, Acta Cxyete 2, 154 (2956)

Date, Me, Private Communication (2966)

Fuippen, RBs, and Friedberg, SAc, Je Apple Phys. Suppl. 32, 333 (2960)
Groth, Py Chem Keyste, T, 27 (2906)

Meinberg Ry J. Apple Pays. To be published Maret (1967)
9. (2966)

Kroguann, Ke, and Mattes, 8, Zeit. fur tekst, 120, 292 (2965)

Meinberg Re, Bully Ame Phys, Soc. II,

Larson, A.C, and Croner D.T., Acta Cryst. in press (1965)
Larson, A.C, unpublished (1965)

Larson, AcC., Roof, ReB. Jr+, Crener, Dif., Loa Alanos Sctentific Laboratory
Roports 297, 305, 3255, 319v, 5259, 5309, 5310 (1985, 1964, 1965)

Lipson, Hs, Proc. Rey. Sos. A152 5h (19560)

Mizuno, Je, Je Phys S0e+ Japan 26, 1547 (2962)

Mizuno Je, Je Phys. Soe. Japan 15, 2422 (2960)

Mascarentas, $Y=$, Anaie da Acad. Brasileira de Ciencias, 35, 260 (2964)
Clade, K., Piya. Revs Letters 15, 252 (1955)

Oeada, Ke, Kay, Mels, Gromer, DT, Alnoovar, I., J. Chom Phys. WI, she (1965)

Osaki, Key Heliad Ye, Watanabe, 2, J. Phys. Soce Japan 16, 957 (1965)

Osaki, K-, Maral, Y., Watanabe, T., J. Phys. Soc. Japen 19, 727 (1964)
---Page Break---
$B=$

Robingon, Heke, Friedberg, See Phys. Rev. 121, oe (2960)
Roof, R.B., Cromer, D.T., Larson, A.C. , 3259 Los Alamos Scientific Lab. (1965)
spence, R.D., Miadents, Fs, £1 Saffar, Zand Kleiner, Re,
Se Appl. Phys, (1964) Supp. 35, 05\% (1965)

Unterlitner, F., Chaya, Y., Pepinsiy, R, (To be published)

Watson, RE, Freeman, S.A, Acta Cryst. 24, 27 (2961)

Figures

Stereoscopic Figures $(1,2,3)$ should be viewed with one's eyes decoupled Lie, The right side of the figure should be view by the right eye and the Left side by the left eye, A piece of paper extending from the nose to the figure with an edge between the halves of the figure and one eye on each side
of the paper, or a comercial viewer, ts of ald.
---Page Break---

Figs 1 Stereocran of Manganous Poraate Dihydrate, View is slightly off (100) direction.

Fig. 2 Stereogran of Sodiun Alum Ellipsoids are scaled to twice the RMS. amplitude of vibration.
---Page Break---
fare scaled to twice the RMS. amplitude of vibration

Fig. 3 Stereoeran of Douterated Amoniua Alus, Eilipeoids
---Page Break---
Figs b Sketch of Color Xi)Cig*61ig0 shor:
metal ton and possible exenange peti.
cndings of the
---Page Break---
VV V
derangeuent of magnetic moments in $¥ i \mathrm{Clp}-0 \mathrm{Rg} 0$ for the magnetic space group $1,2 / \mathrm{e}$. The angie detween the Megnetic moment and the a axis is approximately 10°,

Fig. 5
---Page Break---
5.

Form factor for $¥ i 2^{*}$ in $\mathrm{NiClg}^{*} 6 \mathrm{H} 20$, from date
taken at $1.5^{\circ} \mathrm{K}$, Solid line fs the theoretical
curve for the spherical part. All indices are
Dased on the magnetic unit cell.

Fig. 6
---Page Break---
Magnetic form factor
of
---Page Break---
oe

Publication List

1. Grystel structure ty Neutron Diffraction and the Antiferroelectric Phase ?Transition in Copper Fornate Tetranyarate, K. Okada, MI. Kay, De. Cromer, T. Alnodovar, J. Chem Phys. Wh, 1643 (1966).

2 Magnetic Structure of the Zete Phose of Pdgiine Alloy, JA. Gonzalo and ME. Kay, J. Phys Soc. Jepan 21, 1606 (1965).
3. Refinenent of the Structure of D-Tartarse Acid by X-Ray and Neutron Diffraction, Y. Okaya, MR. Semple, and MI. Hay, Acta Cryst 21, 257 (1966).
A. Retinenent of the Atun structure

2 Xehay and Neutron Diffraction Stuly of CsA1(904)e+22\%0, « Hidun,
DAE, Cromer, MI. Kay, A.C. Larson 21, 383 (1966).
5. Refinement of the Alum structures

Hr X-Ray and Neutron Diffraction of $\mathrm{NaA}(804) \mathrm{s}^{\circ} 12 \mathrm{HeO}$, / Alum, D.T. Cromer, Me, Kay, and A.C, Larson, Acta Cryst, in pre
6. Refinement of the Alum structures,

IV Neutron Diffraction study of Deuterated Amonium Alum NDsA1(S0s)-12D20 fandq Alum, Df. Cromer, and MI. Kay, Acta Cryst, in pre

Te Magnetic Structure of MiCle*6HIO, R. Kleinberg, J. Appl. Phys, To be published March, 1967.

Papers presented at neetings
2. Crystal structure by Neutron Diffraction and Antiferroclectric properties Of Copper Formate Tetrahydrate, K. Okada, M.I. Kay, DT. Cromer, I, Alnodover, ?American Crystallographic Assn. Meeting, Austin, Texas, Feb. , 1966.
2. Refinement of Alum structures, Dut. Cromer, MI. Kay, A.C. Larson ?Averican Crystallographic Ash. Meeting, Austin, Texas, Feb. , 1965.

3+ Magnetic Structure of Zeta Pdjthe, JA, Gonzalo and MI. Kay, International Union of Crystallogrephy, International Congresa, Moscow, USSR, MWY, 1966,

4, Magnetic Structure of CoCla-6ie0, R, Kleinberg, presented st Aneriean Physical Soc. Meeting, Mexteo City, Aug, 1966,
5. Magnetic Structure of NiClo*6ig0, R. Kleinberg, 12th Annual Conference of Magnetism and Magnetic Materials, Vashington, D.C, Nov. , 1966.
6. ?The Hydrogen Positions in lin Formate ?2120, MI. Kay, I. Almodovar, and S:F, aplan, dnerican Crystallographic Assn. Weeting, Atlanta, Georeia San.» 1967.
---Page Break---

