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?The neutren diffraction group at the Puerto Rico Mucleer Center hes



worked on essentially two types of probleat, The first is concerned with

tthe chemical binding of atoms in crystals and molecules, and the second with

?the nature of ferronagnetie.

Both probleas are related to the spatial arrangesent of atone in

molecules, If either x-reys er neutrons are scattered fron eryatele,

patterns can scoatines be analyzed wich shov the errangenint of atona in

?the crystal. The amplitude of x-rays diffracted fron ataas is proportions)

to the atonte muber of scattering tons, ?Thus, if there are Light and heavy

tous in the sene compound, the contribution of the Light atone is very weak

and ite position can be detarained only with great difficulty, If neutrons

?axe used, hovever, they are fexttored by the melet of the atoms, and at

a remit, diffraction of neutrons by Might elenente compares fevorsbly

?with that fron heavier elanents,

Toere is also @ neutren-alactres spin intamactien in compounts viich

possess atoas vith unpeized olectrons, Since the magnetic properties of

substances are related to the way the electron spins ere arranged within

 

?the crystal, neutron diffraction provides an accurate method for deter~

mining auch spin arrangenents (naguetic structures).
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Yanganese Formate Dityarate

1. Introduction

?In two papers by Okada (1965) and Okada, Kay, Crouer, and Almodovar (1965)

?the exystel structure and soue of the electrical properties of comer

formate tetraiydrate vere described.

?The more common and nore stable form of the plus two formates of tonic

size sinilar to copper or manganese is a monoclinic dihydrate phase, Of

known siniler structure are the aacnesiun and manganese (Osaki, Takai and

Watanabe) (1954), nereatter referred to as oli), eine (ort (2963)), copper

(4 puxowska-strayzevsia (1965), hereafter referred as 38), and nickel

(Krogunnn and Mattes (1963). The present study defines the hydrogen positions

4n at Least one of these compounds (manganese) witch should te typical of

?the group. As might be expected from the ereater stability of the éitydrates,

?the manganous femate shows @ stable iyérogen bending schene with no disorder.

?The crystal structure of Mn formate dihydrate as been deternined by

?iW (2964) and by Mascarenhas (1954). The eld parameters (e~.06, be7.29,

£9.60, 8 097.7%) datersined by the former authors were used in the present

study, ?The space group 48 F2s/e.

?The structure consists of Mal atena at cell corners related by symmetry

to Mn atons at a face centers. A second aet of M2 positions is found in

Band ¢ face centers. In other vords set one 4 in the plane at X60 and set



?two at X=1/2, The Manganese atoms near X=0 are linked together by fornates

4in the manner of copper formate ./ti,0 (Okada, Kay, Cromer, and Almodovar).

?To complete the cctabedren around Yi atens, the second formate group Links

Mid te th? ine plane epproxinately perpendicular to (100). The structure

4a atom in the stereogran in Fig, 1.
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?The octahedron around Mn? is completed by water axygens. The envi.

ro.iamtG around the two types of manganese are thus radically different from

?each other; one is octahedrally coordinated to aix formate oxygens and

tthe other to two formate oxygens and four vater oxygens. ?This structure

probebly accounts for the two magnetic transitions (Abe, Vorigait, Matsmra,

?Torii and Yeemgnta (196!)) found in Mn formate at 5.7K and 1.7%. According

?to Abe et. a. (1964), cations on the first site, only, probably order, first

?to Ainonsionally et 5.7 and then totally at 1.7%

TE, Bagerizentel,

?ree zones of neutron diffraction data were taken on Im(HC02)2*2ie0

crystals gro from vater solution to find the hydrogen positions. A set

of epproxinate paranrters vere found using (Fype ~ Fyn,c,o) Fourier

projections and refined by neane of least squares (Roof, Craner, and Larson (1965))

to an R of O12.



?The final parameters are given in Table T and compared with the results

of Gi. xcept for the y coordinate of C2, all coordinates agree within

2c. This ecrepancy seems to effect only the 05-C2-0h angle as seen in

?Table Tia.

MIT Conclusions

?The hydrogen bonding schene indicated by OHW is correct. It might be

noted thet there are water-cxygen to oxygen approaches that could be

?conceivably hydrogen bended of the order of 3.18 The hydrogen positions

do not, however, ndait of such Linkages and difference maps show no significant

extra hydrogen density net ascribable to anisotropic vibrations.

Tt will be noted thet the formate hydrogens have enormous tenperature

factors which are equivalent to root mean square amplitudes of vibration

�
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about .38, the stereo projection presented in Fig. 1 shows the formate

?hydrogens surroundings are such as to permit a good deal of flapping; i.e.

the tgeto other atom distances are elt creater than 2.58

We may then conclude that the Gitydrates unique tydrogen bonding scheme



?and three dimensional formate bridging array may be correlated with the

 

greater stability of these compounds as coupared to copper formate tetrahydrat

Copper Formate Dinydrate

Introduction

Daring the early phases of the manganese formate vor! Bukawsia-

strayzevake published a refinenent of copper formate Aitytrate from three

zones of x-ray date, ?The refinement consisted of Fourier projections with

?the Co abstracted. Ho attempt was noted in the paper to either do complete

difference mp or to even compute 1 Fe mp to extinate series termination

errors. The lov R of «1 was probably ve to the effect of the heavy copper

scattering.

Yioted vas the greater aistortion of the octahedron of oxgens about

?copper in comparizon to nickel (Kiroman and Matt

 

(1965))by elongation of



?two of the six Cu-0 onde (nee table Tia). BS conmelated the elongation of

 

uO with the elongation of 0-0 in the formate group. The extent of the

elongation noted axounted to -2 and .058 aifterencen in the carbon-oxygen

eeproaches tn the two formate groups (teble Tia). Such atfferences teply a fair

degree of difference of bond character between the two 0-0 bonds in a formate

lon, ?The effect 1 somewhat larger than night be expected froa the differences

between the oxygen linkages to different types of copper orbitals.

�

---Page Break---

oS

TL, fepults of cu Formate Refinement

or these reasons we rerefined the x=nay data by neans of Least aquares

?using the progran of Roof, Cromer and Larson (195) using a weighting schene

of We/(Fo + .cero?)}/2 with correction for anamolous dispersion for the

copper, the resuite are given in Table IIfe together with the results of BS.

?The coordinats

 



ace translated to the origin used by GH and the atons

relabied for easy comparison with the Hn formate work.

se 6-0 distances in the copper fomate Gilydrate now agree quite well

with the 0-0 distances in other fomates, including copper fomate «Mi,0,

witnin the standard devietions of the senate,

5S reported a 02-03 hydrocen bond of 2.99% 2f the OF related to the

© at 2.998 fron Oye by the sexew axis transformation 18 choten, © 2-03

distance of 2.76R found. This is the hydrogen bonded spproach found in

sanganese formate.

ssnyarous Copper Forsate

Ts Introtiction

1h three Ginenatonal Least equares refinesest of the ankydreus copper

fomate x-ray date of Barclay, and

 

ymnaré (1961) was min using the Roof,

Croner, and Larson (1965)progran. Anisotropic tesperature factors and an

empirical extinction correction were included. The results were in very



good agreesent with the Barclay and Kennard fourier results. ?There was,

 

however, just enough change to bring all C-O distances within 2 standard

deviations of the average, confining our results on Copper formate dihydrate.

?the new distances and angles are given in Table IIb and the positions) end

?thermal paraneters in IIIb.

�
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TZ, Conclusions

 

?The general molecular gecuetry of the various transition metal formate

inyarates isomorphous with Mn has been determined by the various authors

quoted. The study reported bere defined the hydrogen tonding schene, There

?are clearly sone distortions, as expected in the octahedral surroundings of

?the metal ions.

Fine details (i.e, of less than Ca.0.05R) are not established in any of

these compounds except possibly the i, It is clear that three dimensional,

x-ray counter work and neutron dete on a deuterated compound are needed.

ums



1. Intromuetion

1m our 1966 Annual Report (FRICOh) and in Cromer, Kay, and Larson (1966)

?the structure of the / alum, (C&AL(SO,,),+12H,0) vas described. Theg, and 7 alise

structures as exenplified by My, at Wo,A1(90,,)pr22i,0 respectively, have now

Deen completed. The x-ray work was dove by Croaer and Larson at Los Alanoe

Scientific Laboratory. Neutron diffraction data vas taken at PeRMCs to

Aeternine the hydrogen posttions.

?he Ales are o large clasn of double salte having the general forma

AM BP9(ROy)*12iL0 where A can be Wi,» CiisMis, Na, K, Hb, Cs; B can be AL,

Ga, ce, Pe, V; R can be 8, Sa or Be.

?Tee compounds are cubte with epace group Pay (240 Table IV). The gross

structures were originally determined by Lipson (1935) and refined in the

preseat work.

?oe tope of alum formed depends on the aize of the nosovalent cation.

XE the cation is seal the 7 alum forms, ?he only know representative of

this class is NeAL(Sq,)or2H0, The 4 alum forns if the cation is large and
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the gi abun, which is by far the most comon type, occurs Sf the cation is of

intermediate size, In all the alums there are two erystallovrephically

difterent water uclecules, each aszcciated exclusively with either the

monovalent or trivalent cation, Tie trivalent cation is always surrounded

by efx water mclecules in a noarly recular octahedron but the orientation

of the octanearon with respect to the coll axes ie different in each of the

?three types. The monovalent cation in the gland 7 alune also has oix waters

sn a nearly regular octahedron.

Tbe Iarce cation in Falun can acccmodate 12 oxygen neighbors. Te attain

thts large coordination muber the water octahedron is compressed lous the

threefold axis and stretched out normal to this axis until st is nearly planer.

?the two ends of the resulting triconal antiprisn are separated by only about

0.068. ?the sulfate groups at each end of this antiprisn are then moved along

tne threefold axis tovard the central cation until six sulfate oxygens are

about the sane distance fron the cation as are the water molecules. A slightly

distorted euble close packed array of oxygens thus surround the cation.

dn the 7 structure oix water molecules epproach the small sodiun cation

mich nore closely than in the o\structure, ?This notion cannot tale place unless

?the hydrogen bonding system changes, The most striicing result is that the

mulfate groups becone oppositely oriented along the threefold ax

Prom Table IV, ft may be noted that 640 on the three fond (XXX) axis



(vetonging to the sulfate group) is pointed tovards the AT position st

{a/2,2/2,1/2) in the 7 alums, but tovards the AL?® et the cell origin in

oh and Pato.

IT Y-Kum: WakL(50,)9°22H,0

The atom positions found (Table IV) do not differ by more than about

0.058 from those reported by Lipson (1956). The hydrogen paraneters are
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4.

tabulated in Table V. The interatomic distances and bond angles are given

in Table VI. The standard deviations were calculated using the entire

vartance-covariance natrix and include the lsttice parameter error, However,

?the values involving hydrogen atom positional pareneters fro the neutron

data refinenent assune no error in heavy atom positions.

?The water molecules about the eluminun aton form a perfect octahedron

aathough this is not required by the crystal symmetry. Whereas the principal

orthogonal axes of this ootahedron coincide alnost exactly with the cell. axe

tn edua, and withing « fev degrees ing alun, the octahedron at the

origin tn 7 alum is retated by 39,4° about the threefold axis of the bety



A@lagonal ef the unit cell, The Al-O distance te the suse in both Cs alum

and Na alus, The octahedron of water about the sodium atom is somewhat

Alatorted by being stretched out along the threefold axis of the cell.

?The angles in the sulfate group depart fron those of a regular tetrahedron

by a anal tut apparently significant amount, The differences, for equivalent

angles, are in the sane direction ax those in Cx alum although the departure

from tetrahedral symetry of the aulfate group in Cs alum vere not significant.

The rigid body motion, discussed belov, might well account for the apparent

deviation from tetrahedral aymetry, ?The anisotropic thermal paraseters for

both neutron end x-rays work are given in Table VIT a and bs

?The anisotropic thermal paraneters of the sulfate group do not seen

to be consistent with the rigid body analysia given by Cruickshank (1956).

We might expect a torsional orcilation of the group about the threefold axis.

Hovever, the major axis of the 0,(2) thermal ellipsoid, instead of being

normal to the threefold axis is at an angle of 65.5°, le believe that this

4 a case in which the translational and the rotational notions are coupled.

?Tims the Cruickshank analysis does not apply. The 0,(2)-0,(2) hydrogen bond

�
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is fairly short, 2.62R, and the 0,(2)-i(lt) distance is 1.64%, The principal

axis of the 0,(2) thermal ellipsoid makes an encle of 04.5° with the S-0 bond

and an angle of 79.9° with the O---ti(4) bond, Thus a motion of 0.367%



(the rime, amplitude along this axis) changes the O---i(!) Aatance from

OAR to 1.628, a small amount. However, if this 0.368 motion were to be

ddrected along a Line normal to both the §-0 bond and the threefold axis, the

O--st(h) atatance would be reduced to 2.538 This sulfate group Mes on &

threefold axis so thet a simple rotation about this axis will reduce three

Onnaif Alstances and ve reason that the whole group therefore is forced to

translate along the threefold axis vnenever it rotates about this axa.

Figure 2 Sa a stereo view of a portion of the structure, A sulfate

group {2 at the center of the figure and the direction of view is normal to

?the threefold axis and in « plane containing the $-0,(1) and $-0,(2) bonds.

The ellipsoids have been derived fron the neutron diffraction date and are

scaled so that their axes are tvo tines the rime, amplitude, The alunioun

?ston and ite water neighbors 4s at the top center and the sodium atou with its

neighbors 1s at the left, The notion of 0,(2), 20 as to avoid the kydrogen

neighbor

 

can be clearly seen, This figure was produced by the 80-020

aiorofilm plotter using a code recently developed by Larson (1966).

?Toe fact thet the thermal motion of O4(2) was fount to be essentially

?the sane from both the x-ray and neutron diffraction measurenents is strong

evidence that the apparent notion is not an artifect remiting fron systenatic

error in the date,



corrections to the 8-0 bond lengths were computed according to the in

phase or "riding motion? assumption of Busing and Levy (1964). The 8-0 bond

Lengths appear to be about 0.015% shorter then those found in Cs alum (CKL)

�
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10.

Dut Because of the uncertainty in the thermal motion correction the difference

is probably not significant, Further analysis is planned,

The 0-H Aistances, except for O,(2)-it(4), show the usual feature that

Donds determined fron x-ray data ere shorter than those determined by neutron

attraction. The O-# bonds in thie structure are ail nearly the sane and 40

not show ary particular correlation of long O-if bonds and short, 0-0 hydrogen

Yonda. As in alum, water (1), which 1s associated with the monovalent cation

 

forms hydrogen bonds that Link Og(2) of one sulfate group with 0,(2) of another.

?Again, as in alua, water (2) forms hydrogen bonds with 0,(2) and water (1).

In the present cage there is a strong indication that shorter hydrogen bonds

tend to be more nearly Linear.

TIT qh, -Abuns ND,AL(S04)p*22020



Deuterated exnoniun alum wes selected as and alu: to study by neutron

?The hydrogen atcus in the vater aolecules

 

diffraction for several. reason

could be loceted accurately, In addition the nature of the disorder of the

amoniun ion, which mist exist if the space group is to regain Pa, could also

ary average centric

 

?ve determined. ?The amoniun ion can attain the nei

aymetry by rotating freely or by randonly assuming either of two orsentations.

Tt was aleo of interest to verify the sulfate group disorder found by Larson

?and Cromer (1966) by means of x-ray diffraction and to determine whether any

water molecule disorder is coupled with the sulfate disorder.

Refinement of the structure

A funn ntrix least equares refinement including anteotrente temperature

factors was carried out, This refinenent led to Ra9.2°/qy AB in the case

of the x-ray xefinesent, the thermal paraneters for the sulfate oxygens were

 



�
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quite large and quite anisotropic. Other thermal parameters behaved normally.

?ane ellipsoide are scuevhat snaLler then those obtained from the analogous

xeray refinenent of ordered Mii, alun but the directions of the axes are in

good agreenent for the two case

 

?A &igference Fourier clearly revealed ssall peaks fron disordered sulfate

?oxygen atons, A model with a fraction, k, of reversed sulfate oxygen atons

was then refined as in the x-ray refinenent of K slum (Larson, and Croser, (1966)).

Hovever, no attempt was made to displace /2 ND, groups along the threefold

?exis ao vas done for the potassium atom in K alum, This additional disorder

would have introduced too many highly correlated paraseters. Anisotropic

?thermal parameters for the reversed axygen, 0g(2)', ad not renain real 20

fined refinenent was made vith the reversed oxygen ators isotropic and all



other atons anisotropic. ?The final R index was 8.4°/., The final pareneters

are given in Table VIII, The disorder parameter 1s 0,116 1'0,c22 in good

agreesent vith the value indloated by the x-ray date for My alum, In the

Tables V, and folloving, the symbols Og(2)' and 09(2)' are used for the

reversed sulfate oxygen atons end D' ie used for the half deuterium atoms

in the disordered ND, group.

?the various interatonie Gistances and bond angles and their standard

deviation are given in Table IX The anisotropic thermal paraseters were

transformed to obtain the thermal ellipsoid parsneters, vhich are given in

Table X. ?The O-D bond lengths have been corrected assuming that D rides

on 0 (Busing and Levy, 0964)), Ho such corrections were made to 9-0 and N-D

ends becuse of uncertainties introduced by the disorder,

Agreenent of these distances with those fron the x-ray study of the

tums (Larson and Croner, (1966) is reasonable except for three striking

exceptions. ?The 0,(2)-04(2) and O,(2) hydrogen bond distances are both

�

---Page Break---

2



about 0.05R longer than in Wii, alum. ?The Al-Oy(2) distance found bene $s

1.065

augné  0,008R. r¢ these aifterences are real, they mast arise fron an isotope

0.005R whereas the analogous aiatence found ty xrays An Mi, chim Se

eftect. To settle the question, an x-ray study was made of deuterated amonius

?elun and a refinesent ves made exactly as hed been made for Hi, eum

19 were no significant differences between these

 

(uareon and Cromer, (1966))- The

xeray studies of Mi, and WD, alums,

As another check to determine if ve had systematic errors in either our

xeray vork er neutron work, the neutron data for Ne alum (Croser, Key, and

tarson, (1966)) were refined while letting all paraneters vary. (In the original

work beavy stona had been held in fixed positions for the neutron refinesent).

Unfortunetely only Limited three-dinensionel date were available and there were

only 144 observations to determine 7h parameters, Nevertheless the refinenent

?converged axttafactorily and the parameters did not change very mich. The

remuiting A1-0,(2) Atstance vas 1.679 1 0.014, An good agreement with the x-ray



 

value, In this case no aystenatic difference existed in the two techniques.

We believe that the nost Likely reason for the difference between the

 

preeent neutron remults and the x-ray results is thet the model used for

refinenant does not preyerly eccaunt for the disorder. Thus, the systenstic

error existe in the least-squares model and not in either of the experimental:

methods, No provision for positional disorder of the nitrogen atom in the

emonium ion was made in either refinement, In the refinenent of K alum the

potessiun aleorder was coupled with sulfate group disorder, Weglect of this

aduorder would have a mich greater effect on the neutron because the deuterium

contributes « large anount to the scattering wheres the hydrogen atone are

practically negligible in x-rey

results are probably correct and the neutron resulte are in error.

 

?attering. We therefore reason thet the x-ray

�
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itterence Fourfers revealed no significant features and there 48 no

Gvieence for water discrder coupled with sulfate grow disorder, Further, there



0 no marked anisotropy in the thermal notion of the deuterium atons which

might euggest positional disorder. As noted by Croner and Larson (1966) the

mafate oxygen atom can form hydrogen bond with the sane fydrogen atoms

whether the exygen aton is in position 0,(2) oF 0,(2)'.

Ime two ep distances in the ND, group differ ty 0.0868 but thts

difference is probably not real. The longer distance has « large standard

deviation and further there is the possibility for some positional disorder

cof the 1m, group coupled with the sulfate group disorder, Although the

therm ellipsoid of the nitrogen aton suggests this possibility, the ellipsoids

of the deuterium do not. The ND, croup perhaps has to aove very Little to

accomodate the reversed 0,(1) atom because either an 0-

 

Doli hydrogen bond

?can form (the O---11 distance ic 2,648) or the Van der Waals radius of the

nitrogen aton is smaller along a symetry axis of the I, group than in other

atrections.

?The O-D bonds of water (1) are significantly shorter than those of vater (2).

?Tie difference ie related to the strength of the hydrogen bonds, the shorter

O-D bonds being associated with longer hydrogen bonds, The shorter hydrogen

bonds also tend to be closer to Linearity.



A stereo drawing of a portion of the structure is show in Fig. 3. The

aumonium ion at 1/2,1/2,1/2, (4n Sts two orientations) is shom with its

six yater nesgtiors in the lover right front. The octahedron about the aluminus

?at 2/2,0,1/2 48 shomm at the lover left front. ?The sulfate group (in tte

normal orientation only) ie in the middle. All water molecules hydrogen

Donded to the sulfate group are show.

�
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Except as noted below, all calculations were performed with en TE¥-709%

using codes written by Larson, Roof, and Cromer (1963, 196%, 1965).

Magnetic Structures

I Introduction

Recent miclear magnetic resenance measurenents by pence, Miédents,

Mi Saffar, and, Kleinberg (196+) have confirmed that CoC,? 6Hg0 and MCL, 6,0

are antiferronagnetic of point group 2/ml' at Liquid helium temperatures,

?and that each salt has one of three possible magnetic structures

 

In order,

to uniquely determine the correct structures a neutron diffraction study was



required, The results of auch a study ere described in the present report.

Crystale of NiClg?61,0 and CoClg' 61,0 are monoclinic, and according

?to Mizuno (2960, 1962) belong to the apace C2/m There are two molecules

in the unit cell, For the nickel salt a-20.25A, De7.05A, o-6.57Ay and

f -122910!. For the Co salt anl0.34, b7405, 6.67, and 2 12°20".

?rhe metal ions are situated on inversion centers at the cell corners, end

 

at the centers of the a:b faces, They are octehedrally coordinated to four

coyeen and two chlorine atoas a8 shom in Fig, 4, These oxygens form &

slightly distorted equare, with the cations at the center, while chlorines

are Located on the two normals to the oxygen plane. The renaining two

ater molecules of the formila unit are located in the mirror plane end

are relatively free, but do take part in the hydrogen bonding schene.

?The Local magnetic fields st the proton positions have been measured

?by epplied and zero field mar methods at 1.1% ty Spence, Middents, El Saffer,

and Kleinberg (1964). By applying magnetic symetry theory to these data,

it Se found that the yosetble magnetic space group aysbola which describe the

aaguatic ordering are P;2,/%, C,2/e and T,2/c. Chearly, O2/e and T,2/e are



equivalent, but generate different structures vhen applied to en axial vector

�
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tn a cles copoclinte cell. Conditions for magatic Bragg sxattering fro

the (102) rone, for the three different structures thet are gnnerated by

seplying each of these eythola to the unual monoclinis cell, are that By £

be edd-even, evennodd, and odd-otd rempectively.

HE icles 60

single crystals of Hici,/65,0 grom fron aquecis solution at shout 30°C

had the habit deseribed by Groth (1906), An epproximately cylindrical crystel

vas surpended frca « titantis-sircoaiu crystal oust that was attached

to the tall of  ofean devar. At 4.2% the crystals was aligned, end mueleer

?peace were neasured on the (10%) rone to give a set of eppraxinate unit colt

Aimanatons.

?h subsequent search for magnetic reflections showed that the spect Group

a Tqo/e, with the magnetic structure as given in Fig, 5. This structure

 

consists of antiferrosagnetic (O01) planes with an antiferrensgnetic coupling

petween planes, to give a magnetic cell that is tice the size of the chanical

cel, along the © xt.



the angie between the spin direction and the afeci axte was deternined

us that angle which produced a mintmm value for the function BEIF, - Fel

Te wes found to be 22,5° from the a! wis towards the a axis, with a standard

 

deviation of about L.0°, the cbeerved magnetic form factor values of HIE"

fare mom in Fig. 6, The sclid Line 4s the spherical part of the nif form

factor, calculated by Watson and Freenan (1961), and is seen to give 8 good

fit with the date.

mis result differs from having a apin direction along the a' exis as

as been proppsed from auscoptibility, measurenents by Reseda, Kobayssht,

and, Date (1959) and, FLippen and Friedberg (1960). On the other hand £* 1#

�
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-16e

$5 good agrecaent with the results of the antiferroagnetic resonance and

napwtic tongue seasurenente of Date (1965), who has found the spin easy

ais to be 25°45 trom tho

HE Coty: Sti0

Neutron diffraction date beve been taken at 4.2%, and 25%, on the



ext

 

(oR) tone. only reflections of the type osd-odd, were observed therefore,

?the space group 4s I,0/e and the structure, except for spin direction, 1s as

shown in Figs 5.

?Thin magnetic atructure consists of antiferroaagnetic (OOL) planes, with

an antiferromagnetic coupling between the planes, to give a magnetic cell

that is double the chemical cell, in the ¢ direction,

As the miclear intensity date have not yet been refined, the set of

experizental structure factors was scaled by dividing each mumbor of the

set by the sun of the set. Tho observed structure factors vere then compared

to acts of calculated atructure factors, watch were sealed in the gane way.

Tre angle between the spin direction and the c axis, is defined to be thet

angle at which JiP. - Fel te minimus, This angle ves found to be about

25°. there say be quite & large standard deviation on this angle, as it

was quite difficult to determine the beckground scattering at 4.2% The

form factor curve for this angle {a shom in Fig, 7. We note thet the path

engin for (202) was quite iarge because of the crystal ehepe, thus giving

?the lov observed value, The reflections (105) and (305) which have such

large error flags cleo have intensities that are only about 3°/, of the

Iargest observed intensity.



 

IV Conctust

?There are four possible intreplaner superexchange paths in the cobalt

chloride hexehydrate. ?They are shon in Fig. lb, The paths 1-5, are

 

ntially the sane as in cobalt chloride dihydrate, where they serve to

�
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imterlin: the strongly coupled ferromgnetic chain

 

In that case they have

?the sualler exchange energy. Short renge order is attributed to the strong

Co-Cl-Co intrachain coupling. ?The magnetic structure does not stabilize unti2

the energies of the paths 1-5 predominate over the thermal enersy. This occurs

at about 17.5%

4n the case of the cobalt chloride hexaiydrate, there ie no strang

Conctaco coupling along the axis. Instead, there is the very weal: ?0-0;-0;-C0,

?coupling along path 5 in Pig, . Thus in the hexahyarete we expect antiferronse-



netic sheets to be formed in the (O01) plane, at about 17%, as a consequence

of the paths 14%, As the temperature is decreased there is inerenaing short

range order until about 2,25°K, where the woal: in interplaner forces bring

?turee Ainensional stability to the structures

?This conclusion is 1ustrated in the specific beat date of cobalt chloride

hexatyérate, as measured by Robinson and Friedberg (1960). They found in these

?that approxinately 52°/o of the entropy of the transition was obtained above

the Noel tenperature, and it ie seen that the Lintting entropy Rin 2 is

reached in the vicinity of the aitydrate's sleel temperature,

xcept for the difference in epin direction, the magnetic ordering in

Micip: 6110 is the eane ae for the CoClp'6#,0. The spin direction for the former

 

sat 1972.59 from the a! axis, and for the latter salt is approximately along

?the c axis. ?This, changing the cation is these two isostructural salts does

not change the magnetic ordering.

Tt $e of interest now to study the antiferrongnetion in HBr 6H0,

cconry-61,0 and WiCig" 2Hg0, and At ts planned te do 40,

ocene available.

econ as the crystals



 

ote: ?The experinental data for the Yagnetic studies on Co and 11iCip+6H,0 vere taken

fat the U.S. Haval Research Reactor and anelyzed and interpreted at PRIC.

�
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Ferroelectrics

In an effort to provide the solid state physiciat

 

st PARNC, (and

 

other Laboratories) with the etonic gecustrical knowledge with which to

Anterpret their electrical measureuents, the crystel structure determinations

of several ferroelectric compounds of interest have been undertaken.

I Wad,

Data has been taken on NeliQ, about 15°C below the transition texperature.



While a rigorous analysis avaits further date correction, preliminary results

do not seem to indicate any strongly preferred vibrational mole that would

account for the phase transition, Such motions my shov up after an

extinction correction is made or at higher temperatures. Data will be

?taken at higher temperatures

TE tasis(se05)2

?The room temperature structure of Halis(se05), has alnost been completed.

Preliminary results show that the heary aton positions determined by

Unteriitner (1966) are correct and those By Chou and Chotang (1957) contain

errors, Hydrogen positions will be available shortly.

HII H4,(8005)2

Preliminary measurenonte

 

how HHs('S605)p space ereup Poe with ax6.32,

Brl6.11, ox6.24, Zab molecules/unit cell.

Liquid structures

Tt was hoped to determine the structure (coordination) of molten S0C2y.

If aifferent ioctopes of Sn with substantially different scattering lenet



 

may be used, then the neutron diffraction patterns may be combined to yield

separate parts of the radial distribution function.

�
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age

Moamurenents have been made of the scattering Lengths of all available

Asotopes of Sn These are: dé = ,50 02, DT = ,64 £02, De 50 t

V0 6 50 fon, De = 604.00, DO = 64 Yor, Dee = 155 t .05,

wi#* = 459.02, the above Ssctopes account for 96°/y of the Lsctepie entent

of natural tin, If only dsctopic inecherence is included the total scattering

    

   

cross section is 4,62x10°*on and the coherent eross gection 4,6LI10"%em,

Measurements given in Bacon (1962, Neutron Diffraction) indicate 4.9 and 4.6

for the above cross sections, respectively, While the former figure may be

fue to experinental error, there is also a possibility of miclear spin

incoherence, If this is the cast



 

the effect should be fairly substantial

Decause odd muclet account for only about 15°/g of the total natural sactopie

abundance,

Becmuse of the closeness of the scattering lengths of the Sn Ssctopes to

each other it was docided to pursue the quid work with Ou Oh using Cu,

ow, cuPS, ci, 1°, c1°? which have soattezing longthe of «79, -67, Ld,

+%, 1.18, .26700" en, respectively.

�
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-20-

feble-I

Structural Parmmeters for Vin Formate «

?are given first, folLowe

Parameters from neutron data



Sckay parameters (Oi) in parentheses.

Gy, and Hi, are vater oxygens and hydrogens, respectively

x

°

6

+ 0564, 0015 (038)

-3265t. 0012(.325)

09854, oo12(..096)

+0868, oon2(..084)

sWshat, 0012(.439)

+2035%, 0016(.213)

«2700, oon (.267)

4az0t, 0015(.420)

x

°

3

«P23ut. o019(-220)

61344, 0017(.622)

+2067t, 0020(-102)

+2682, 0021(..266)

Text. 0021(. 723)



-6565t, 0019(..656)

+8262, 0020(.485)

 

2

°

°

-27agt. oon5(-274)

hszet, o0n2(.435)

-2035%.0013(.204)

hoot, 0012(.398)

-ke0bt, o0n2(.420)

926 0028(.49%)

+0656, 00n5(..066)

+2958. 0015 (.296)

+227, 006

+3958. 008

+051, 05

0091. 008

-2614. 005

ake, 002

Ja by standard deviations followed by

B



a.283(2.2)

2.42.5(2.2)

2.78.3(2-2)

2.2%.2(2.8)

2.1t.2(1.8)

2.2t.2(2.7)

2,54.2(2.3)

(1.5)

 

Pat

2.24.3(1.8)

3.08, 3(2.4)

ete

6.38.9

3.945

3.98.6

 

3.285

�
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?ape 118

Bond Distances and Angles in Manganese and Copper Fornate Ditydretes with

Standara Deviations. X-Ray reaulte for i (Oifl) and previous X-ray refinesent

of the copper compound are given in parentheses. Corrections to bond distances

{nvolving hydrogens due to the H "ricing" on the Oxygen are given in brackets.

 

MANGANESE COPPER

I Metal-Oxygen Octabedra

m0 eaietoe (2.15) 2.30. xb (2.26)

m-ce 2.135%017 (225) 2.982, 026 (2.02)

mao Bento ? (222) 201s. ony (2.01)

o1-sa-ce ites (7) o.ab7 (90)

o1-a-o8 hts (80.2) eu 5t6 wo

conna-ob eats (03) 6.82.7 )

12-05 aaigte.3s (2.22) 2.364.019 (2.35)

1-4 2.21St.or3 (2,24) 2.0Mbt, 017 (2.02)

12-02 2.165t.05 (2.36) a.97ht. 5 91)

OHO 6.64.5 (1.0) 81.6.6 ()

Osa 2 t9.rh6 (2.8) B96 wn

tee 69.085 (09.8) en5t (69)



 

IX FORMATE GROUPS

 

co 1,264.02 (22) 1,261.05 (2.29)

c1-ce Leite (2.25) 2.30808 (39)

ca-ca-ce qak.5t.2 (226) 2 (2)

tpl 1.054, 052.20)

OL-ch-Hpl 126. 545.8

cencheFpl 126,.983.8

�
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te.

Table Tia Contd.

 

 

2-03 azstce (1425) 1.26405 (uz)



C2=04 1.26.02 (u21) 128, 05 (2)

2tig2 05 (2.06)

05=C2=04 123.0814 (123) azote (aah)

052g mister

ObacBatig2 1ag.5t2.2

TXT HYDROGEN BONDS AND WATER MOLECULES

ota Loot ob [2402

a2 934.08 nay

HOH aoste

ano aphce (213) 2.7oh02 (2.85)

Hal-ob Lptos

a,a-i-08 asots

aoe 2.19.08 (2.81) 2.tat.oe (2.62)

y2-0e 2.008.053

oa-ii2-02 arrts



Opts 1954.05 (961

othe 098.05 (-09)

wpa 07 582.3

 

ozo (2.61) aris (2.79)

OL 1.864.05

O2-HyS-O1, viet

02-05 2.75t.02 (27) 2.67802 (2.76)

ORE 1.86%.05

OyarHy05 arete

�
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3.

?Table IIe

Bond Distances and Angles with Standard Deviations in Anydrous Copper Formate



?Old Keray refinenent results are in parentheses

TONS DISTANCES STANDARD

DEVIATIONS

cu - 1 Lesh (2.985) +009

cu - 2.939 (2.982) +008

ca LgvL (1.986) +007

cu = L952 (2.98) +009

ou - 2.415 (2.391) +008

cu - cu 3.432 (3.035) +005;

a-o 2.2k3 (2.255) Os

ao 2.269 (1.295) +03,

2 - 02 1.250 (1.270) +035,

ca = ob 267 (2.208) ok

a1 - cu - ce B34 (U9) 35

= ca - 98.9 (95) BD

ceca oh 9 (69) oT

> = cu ob 81.8 (66) 235

a-a-o 320.9 ze Lo

= co- h 323.6 ze ua

�

---Page Break---

the

?Beble IIT



Rarefined Peranotyers ond Staugara deviations from Yeoray Date of

original paraasters in parentieses

 

Atos x y 2 B

ou, ° ° ° hia

owe 3 6 ° uta

a -022,005(.055) zat. ood(.2n7) ??«2964.003(.302) EES.

ce w322t,005(.303) «6064, 004(.600) «Wast.o0R(.422) 2a

a +0p't.o0e(.098) teat. oce(.096) «zat. ooe(.223) 205

oe 20U5%,000(.007) 264. 003(.267) sant ove(sbai) 93

3 s430%.002(.425) « 7058.005(.705) «HOR#, 000.405) 2.683

oF +20KE,002(.204) «35%,003(.356) saKE.O0n(.495) Leeks

oa .2.5t,002(.209) hgh 002fshub) 0754. 002(.075) 2.383

oe wast ov{4ia} Bow 00a205) ssa5 one 3.36) 2h

�
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?Table 111

nefined Parqueters and Standard Deviation fron X-Ray date of Barclay and Kennard

Original Paraneters are in Parentheses



 

x y z

oo +2150 (.1252). 0002 +0587 (-0506), 0008 +0062 (0065). 0005

a +0292, (-02u%)..000 13254 (.3226). O25 4.2614 (.2625). 00

cy +2172 (.2710).000 -1540 (.1595)- 0015 +2549 (-2536).0082

a +0096 (095). 0005 +2433 (.2427).0009 +2605 (.2622). 0008

ce +2225 (2285). 0006 10215 (.0262).00L0 -195. (.1950)-003

° +0070 (0061), 0005 +0(U4 (.07U2)..0009 ago (.2902). 0012

oe HUB (,2493 ). 0005, e121 (-12207).0009 -+ 1869 (~+1459). 0025,

?Thermal Parameters

po fa po fa Bs fe

ca oon 00h. 207 0002 =, 0005 +0006

ot +0028 00K +0066 =.0007 +0021 ~-00s

2 0005 +008 +0103, 001g. =, 0008 +0085

a 001g +0043 039 00a =, 0015 -.0029

cy +0021 008g +0105 0002 =, 00K 0024

3 +0004 +005 +0083, 10051 =. 0024 -.0002

ob + 00n4 +0087 +0196 +0002 +002 +0005

 

�
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Table 1V

cent Date and Heavy Atom Parameters for the Alums Studied by

Neutron Diffraction (in order of +1 cation size)

Sample 0AN(S0y)o-12H,0 ??ND4AL(SO,)g- 21240 CAAL(SO, pr 120

Space Op.

 

 

® was 32.352

GLE) ? (65, 05, -3) ?_?

(4,752) ?_ (©, 0, 0) ?

3(4,%,%) 2652 +5090 327

C2) (sie) BAS 2408 2596

og(2)X 295% opae +2009

y 2105 260% whan

2 saubt ans 36

aytayx +0167 +0456 --1595

x + oho; 305 +9507

2 518 2510 28h



ofa)x ?Ba sone 3s

Y +9596 ~- 0069 -.0080

Zz +9573 156 +0000

�
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2

rey

Hydrogen pareaeters in Hak1(50 )p.12%i20 from Least squares

toa

QQ)

Ht)

(3)

(4)

refinenent of neutron diffraction data,

0.5958(21)

0.4 709(22)

0.5504(25)

0.5926(21)

Zz



0.5272(20)

0.3225(21)

0.203115)

0. 3822(15)

 

0.3665(21)

0, 3808(20)

0.4999(2)

0.2204(25)

�
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28.

?Table VI

interatomic distances and angles in 1eA1(50, }g- 121.0

standard devietiont, in parentheses, apply to the Fightnost digit

Distances corrected for thermal motion wre in parentheses

Distances end angles frou neutron date are in underlined.

12-65,(2) 1.881(2)8



Yan604(2) 2.455(2)

?The sulfate group

8-09(1) 46a (4)

(aks)

'8-30,(2) ash (2)

(48)

4(2)-30(2) 2.589(4)

04(2)-20,(2) 2,366(4)

eter molecules

(2-02) 0.184)

2.915(24)

Gov)

o(2)-H(2) 0.05(4)

0,991(24)

G54)

4f2)-H03) 0.924)

0.916(27)

(009)

ay(2)-t4) a.01(s)

0.991(20)

1.006

{2)-A1-04(2)



O42) -Ad-04(2)

y(2)-He-0,(2.)

4 (2)-ta=0y(2)

05(2)=8-04(2)

0¢(2)-8-09(2)

9(2)=04(2)-04(2)

04(2)=04(2)-04(2)

Og(2)-09(2)-04(2)

 

H(2)-04(2)-H(2)

u(3)-0,(2)-1H(4)

90, 0(2)°

90, 0(2)

85.0(2)

95-02)

aa0.a(2)

108.9(2)

60.0

60.3(2)

59.42)



20302)

�
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Hydrogen bonds

a(2)-30 (2)

0,(2)--3 H(2)

Og(2) -0,(2)

(2) -2(2)

og(2) -04(0)

(2) -H(4)

(2) -04(2)

(2) -H(3)

29.

?Table VI Conta.

2. TH7(4) g(2)-#(2) -04(2)

2.703(25)

2,822(3) (2) -H(2) -94(2)

2.901125)

2.605(5) og(2) -1(4) -04(2)

1.655(20)

2.64903) (2) 83) -04(2)

2.613037)



16005)

3563)

aik(2)

376(2)

�
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Atos

Ha,

09(2)

0,2)

(2)

a,(2)

?30

Teble THe

?Toermal elipeotds in Tak2(50y Jp 2250 from X-ray data



Standard deviations, in parentheses, apply to rightsont digit

Direction angles relative to crystel axes

 

ne

dap Tate & « a x

0.270(5)R 2, 26(23)R? shee he? shi?

0,160(3) 2.55(8)

0,160(3) 2.55(8)

oat} Re 5he7 he She

0, 1404 3} 1.54(5)

0,140(3) 1.54(6)

cable) 265) oe

a 3} ei ais ?



le

113(7) 2. 36( 393 Sh ST shy

2a BB)

0: or 2ehh} 10.62(21) 2a} 115(1) h(a

orients) 200} ua 88) tt

+h, 76(26) 43) 133(2) 98(5)

2.63(12) 53(6) ato ag 3

0.27a(4) 2. 34(12) au(u) 12e(10) ?ho(6 |

T 6) 61

SH ERR I a} Sif}

0, 206(5 | 3.35(10) 95(4) 568 Bath)

�
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ae

able VITO

?Thermal ellipsoids in MeAl(S0,)p- 12120 from neutron diffraction date

Standard deviations, in paréntheret, apply to the rightmost digit



Direction angles relative to crystel axes

2S

Aton pplitede BL L a 2

Ma 0. 05(24)R 0.5025 )R* shi? she hie

o.20(6) 3.3(20)

0.2016) 3:3(20)

a 0.4;(20) 2.3(20) she hi she

0,0:20) 2.5033

@.05(40) 0n5(a5,

8 22M} 1.529) sh het sh

ol20(h) 3.502)

0.204) 5.5002)

1 0.2065; 5-2(36 Shed MT SAT

oat) oo} a3

onan(5: w50a)

o,(2 0.36(2 n.6(35 21a 234) 76(5)

fe) 355} 2.3 3 a} 30(20) 204(24)

. 0-10(8 0.816) silt) a3) 20(20)

o.20(2 3.010 aué7) (aT) 86(59)

iil aaa} 3h} Sie} ?Bae owe}

Ona L6(6 913) 0047) 2209:

2 0.123 1.216) 364) aaah) 306 (24)

owe) oH Sun 36033 ae) (55)

orb: 2M) we 105036) xe)

#Q) 0.324) 8.3(20) 23(20) 9n(26) 61(20)



ovzats) 3.0035, 901238) 2(5310) 8o{539)

212500) Bots: 1i(20) athe) 23656)

#2 0.35(4) 9.4(22) mwas) 0035 1)

oz tisha

0.1465) 1.6(32) aah) a1) tea)

6) 0.20(3) 3.3(33) elee) ?ate0} 201139)

508) an9) S345) pha 3109

0.2163 5.834) 65a 6o(a5 ie2(a2)

0. 22(3; 3.9(20) 29(299) 5705) a(S)

i) ova 3 3.5(02) 37488) 551 3} 89(87)

o.22(h 119) 65(29) 39(a7 46(a7)

�
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e

?Tabte Tx

Intevetcnic distances and bond angles tn 10,40(59,);

standard deviations, in perertheses, appay to the rightaoet eight

Distances corrected Fer thermal ceviow are in parentheses

a6 0,(2) 1.065(5)8 0,(2)-41-0,(2) 90.6(2)°

,(2)-A1-0,(2) 03.2(2)

6 Oh) 3-057) (2-8-0, (2) Toe2(1)

0, (2)-1-0,0) 204.00)

¥.04(2)! 2.64(13)



§D, croup

m-2D(1)* 1,204(45) D(1)*=H=D(2) 102.8 (4),

w~60(2)" 1,016(16) ?D(2)*=t-D(2)* 15.99)

80, group

8+05(2) 2-49(2) 04(2)=8+05(2) 109.4(6)

8-0,(1)' 21439(23) 0,(2)=8-0,(2) 1109.6(3)

8-0,(2) 16443(9) 0g(2)"=8+0,(2)* oe(2)

8+0,(2)" sba(4) 0,(2)'-8-04(2) a6(2)

Water molecules

Q(2)-0(1) 0.934(9)8 (2)+0,(1)-D(2) 106.19)"

(0.965)

0,,(2)-D(2) 0.954(9)8

(0.97%)

0,(2)-D(5) 0.993(7) (3)=0,(2)=D(4) 12106.2(7)

(2.008)

04(2)-0(4) 0.908(7)

(2.005)

�
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og(2)93 0,02)

9,(2)-°D()

05(2)=04(2)

0,(2)-0(2)

09(2)-0,(2)

o(2)-0(4)



0,(2)"=04(2)

0,(2)'-D(2)

0(2)"-04(2)

0,(2)'-D(4)

9,(2)-9,(2)

0,(2)-008)

he

?Table 1X contimed

2.T1e(a2) 9g(2)-23)-0,02)

2.06321)

2.7119) 0,(2)-D(2)-0,(2)

2.652(20)

2.6178) 04(2)-D(4)-0,(2)

1.643(9)

2,05(4) og(2)*-D(2)-0,(2)

1.99(4)

2.714) 0,(2)"=D(4)-0(2)

cat)



2.652(9) 9,(2)-D(3)-0,(2)

1.662(9)

163.6(9)

168.219)

269.17)

3512)

62(2)

1ihe(6)

�
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?35+

rabie x

Thermal ellipsoids in ND,A2(S0,),°220,0

Standard deviations, in parentheses, apply to the rightmost digit

rea. 0. Direction angles relative to cell axes

Aton haplitle y a ® 7

¥ wex(2)AM2T)AP hee oh mT

8) 2.703) : - -



80) 2.703) : : -

Da)! 285) 6.0023) ST ht oht

223) 8.3027) - - -

+32(5) 8.327) * - -

D(2)*se7te) 5.79) 2825) rar) 222)

wee) -3.6(8)? 20719) 37(20)??90(a7)

s(2) 7.812) 6920) x(a) 2222)

a 0x(28)?0.(6) SHAT 7 ut

22) 1.24) - - :

22) 1.204) - : :

s 0.183) 2.58) ST MT SMT

one) 1.004) - - :

o.1(2) 1.04) : - -

002) nse) .6) OT ot MT

0.25() 5.05) : - -

0.25(1) 5.065) : - -

o,(2) oar) 2.203) 336) 303(6) 287)

22) 5.706) 6(4) "6(3) 624)

0.09(2) o.(2), (7) 1224) 316)

(2) ovena)?5.6(3) 308) 726) 218)

0.2K) 1.62) ?_98(28) zo(12)T2(20)

0.16(2)2.(3) 4820) sete) 34)

oy@) ora) eee) 337) 9x27) 029)

os) 1.8(2) 8927) 30(24)??200(23)

0.10(2) 0.8(2) mn x(a) 26(8)



�

---Page Break---

om

pa)

(2)

(3)

D(a)

Jeph tate

0.1802)

0,22(2)

0.26(2)

0.2202)

0.2702)

0.2703)

0.15(2)

0,20(2)

0.22)

0.16()

0.20)

0.18(2)



Table x continued

2.43)

4.063)

5.5(8)

3-9(4)

2.63)

5.108)

1.12)

3.1(5)

346)

2.0(2)

3.66)

2.6(2)

3360

Direction angles relative to cell axes

@ B

holo)

e9(9)

(6)

4x9)



#300)

232(8)

ar(s)

207(8)

75)

o(an)

16(8)

59(26)

63(8)

4e(a0)

aer(9)

asco)

20(6)

207(6)

7318)

alto)

sia)

?itao)

29(20)

65(a2)

7

62(6)

67(a1)



(6)

sx(9)

(6)

r(7)

0e(7)

325(li2)

36(40)

329(27)

yo1(20)

na(a7)
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Figures

Stereoscopic Figures (1,2,3) should be viewed with one's eyes decoupled

Lie, The right side of the figure should be view by the right eye and the

Left side by the left eye, A piece of paper extending from the nose to the

figure with an edge between the halves of the figure and one eye on each side

of the paper, or a comercial viewer, ts of ald.

�

---Page Break---

 

 

 

 

 

Figs 1 Stereocran of Manganous Poraate Dihydrate,

View is slightly off (100) direction.
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ne

 

Fig. 2 Stereogran of Sodiun Alum Ellipsoids are scaled

to twice the RMS. amplitude of vibration.
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fare scaled to twice the RMS. amplitude of vibration

Fig. 3 Stereoeran of Douterated Amoniua Alus, Eilipeoids
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Figs b Sketch of Color Xi)Cig*61ig0 shor:

metal ton and possible exenange peti.

 

 

cndings of the
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VV V

derangeuent of magnetic moments in ¥iClp-0Rg0 for the

magnetic space group 1,2/e. The angie detween the

Megnetic moment and the a axis is approximately 10°,

 

Fig. 5
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5.

 

Form factor for ¥i2* in NiClg*6H20, from date

taken at 1.5°K, Solid line fs the theoretical

curve for the spherical part. All indices are

Dased on the magnetic unit cell.

Fig. 6
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Magnetic form factor

of



CoClg: 6H20 (BL, c)*25°
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