PRNC182

PRNC - 182

PUERTO RICO NUCLEAR CENTER

7 PUNTA MANATI

ENVIRONMENTAL STUDIES

Propared for the Puerto Rico Water Resources Authority, By the Staff of Puerto Rico Nuclear Center of the University of Puerto Rico

April 15, 1975
?OPERATED BY UNIVERSITY OF PUERTO RICO UNDER CONTRACT
NO. AT (40411888 FOR US ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
---Page Break---
PUNTA MANATI ENVIRONMENTAL STUDIES
by
E.D, Wood, M.J. Youngbluth, M.E. Nutt, M.N. Yeaman,

Paul Yoshioka, and M.J. Canoy
---Page Break---
PREFACE

This report stems from investigations carried on by the Puerto Rico Nuclear Center. The studies were designed to provide data upon which to judge the suitability of a site for the construction of power generating facilities and to allow the determination of the impact of such construction and operation upon the environnent.

The report represents the combined effort of the scientists, technicians and support staff of the Site Selection Survey Project.

The authors who contributed to the Punta Manati Site

Selection Survey are:
E.D. Wood, Project Leader Physical, Chemical and

Geological Parameters
Marsh J. Youngbluth Zooplankton Studies 1973
Mary E. Nutt and Zooplankton Studies 1974
Marian N, Yeaman
Paul Yoshioka Benthic Invertebrates and
Fish Studies
Michael J. Canoy Plant Associations
Report Coordinator: £. D. Wood
Technical Editor: Ferne Galantai
Project Secretary: Pauline Oretega de Cabassa
Data Processing Rosa Asencio
ii
---Page Break---
wa
2a

INTRODU

PHYSICAI

CHEMIST!

Bet

GEOLOGI

ZOOPLANI
ated
anna

ZOOPLANI
4.24
412)

?TABLE OF CONTENTS

iCTION

IL_AND CHEMICAL PARAMETERS
Introduction
Tides
Currents
Bathynetry
Temperature, Salinity and Density
Temperature

Salinity
Density

RY.
Dissolved Oxygen
Nutrients
Reactive Phosphate
Nitrate
(CAL PARAMETERS
\{KTON STUDIES 1973
Introduction
Materials and Methods
Field Procedures
Laboratory Procedures
Results
Discussion
Limitations of the Data
iKTON STUDIES 1974
Introduction
Materials and Methods
Field Procedures
Laboratory Procedures
Results

Discussion

INVERTEBRATES AND FISH STUDIES

Introduction

Materials and Methods

Field Procedures

Laboratory Procedures

Results

Quantitative Samples
Discussion

Limitations of the Data

10
10

26

26
26
27

64
65
66
67
---Page Break---
TABLE OF CONTENTS continued

4.4 PLANT ASSOCIATIONS

LANT A

4.4.1 Introduction

41412, Materials and Methods
4:4:3, Results and Discussion

References

Appendices

69
69
69
nm
---Page Break---

1.1 INTRODUCTION

?The Puerto Rico Nuclear Center of the University of Puerto Rico has been under contract to the Puerto Rico Water Resources Authority since 1972 to conduct site selection surveys and environmental research studies of seven coastal sites. Experience gained from these investigations Will add to the knowledge about these areas, and provide useful data which will aid in the assessment of the desirability and practicability of locating power generating plants on one or more of these sites.

Puerto Rico Nuclear Center scientists have studied the physical, chemical and geological paraneters of the sites, and the ecological paraneters of zooplankton, benthic intertebrate and fish communities. Plant associations, except for the Cabo Rojo Platform site, have been included.

The sites chosen for study were: Tortuguero Bay,
Punta Manati, Punta Higuero, Cabo Rojo Platform, Punta
Verraco, and?Cabo Mala Pascua. The seventh site, Barrio

Islote, was studied and reported under a separate contract.
?The first site reported was Tortuguero Bay on the north coast of Puerto Rico. The present site reported is Punta Manati, also on the north coast, west of Tortuguero

Bay (see Figure 4.1-F1).
---Page Break---
?unoys a0u oats oaOrs7 ofsseg (anc) enosed TEN oqeo
Pu :CaAd) orerz0a Paung $£(q \neq 2)$ wz0318T4 Ofoy ogey !(IHd) ossNTEH wound
(vwia) FaeueN eaung f(yOs) Keg orsn¥naxoy ?soays Apmlg MOAN wortoateg sere ?qgeTy ?Sty
v3s Nvageuvo

Moos

NW390 SILNYTLv
---Page Break---

2.1 PHYSICAL AND CHEMICAL PARAMETERS AT PUNTA MANATI

by
ED, Wood

2.1.1 INTRODUCTION

Most of the physical, chemical and geological measurements at the Punta Manati site were made at or near the stations shown in Figure 2.1-F1, The transects were spaced at one nautical mile with the " A " stations located as near to shore as it was safe to sample with the RMV R.F. Palumbo. The "B" stations were located in excess of 125 meters and the " C " stations on latitude $18^{\circ} 31.8^{\prime} \mathrm{N}$ in excess of 325 meters.

2.1.2 TIDES

?The tidal waves that affect the north coast of Puerto Rico have their anphidromic point in the Central North Atlantic Ocean with the crest of the cotidal line moving in a counterclockwise direction (Anikouchine and Steinberg, 1973), that \{sy from west to cast past Punta Manati. The tides ate pre-
digted for San Juan by the National Oceanic Survey. An exsple of the tidal pattern over a lunar cycle has been plotted in Wood, et al. (1975b) for Tortuguero Bay. The north coast tides ave semi-diurnal with a maximun excursion of about 75 cm and a mininun daily excursion of about 32 cm . The mean daily tidal excursion is 40 em . The tides for the period of current measurement at Punta Manati have been plotted in Figure 2.1-F2.

2.1.3 CURRENTS

The general current pattern on the north coast of Puerto Rico is to the west with the highest flows during ebb currents (PRWRA, 1975). The usually strong afternoon winds
from the east-northeast tend to increase the velocity of the surface currents to the west. There is a strong correlation between the current patterns and the tides with modification
by the local winds, the North Equatorial Current and the
direction and amplitude of sea swells impinging on the shoreline.
Measurements at the Islote (PRWRA, 1975) and Tortuguero Bay
(Wood et al., 1975b) sites west and east of Punta Manati, respectively, indicate that currents of nearshore surface

Waters reach? about $30 \mathrm{~cm} / \mathrm{sec}$ both east and west parallel to
the coast with a net flow to the west of about $5 \mathrm{cn} / \mathrm{sec}$. There appears to be some seasonal variation to this pattern (PRNRA, 1975).
---Page Break---

Fig. 2.1-F1 Punta Manati site with depth contour lines and hydrographic sampling transects each with three stations.
---Page Break---
?2161 ?11 199032023 g 1990220 woay uene wes
oz-
Ob:
po noonnornennnnencnenen ~Suswsansoem ${ }^{\circ}$
wousn3
Le o
spovs04 oz
oe
ov
oS
ve eb ve L ve a ve
ecéet ue on 64990390

Tide Level for Pta. Manati (cm)
---Page Break---

The currents at Punta Manati were measured on two cgcasions, Ortaber, 10, 192, using dye drops and aertal photography. The first drop was intended to coincide with Peak flood current, but was delayed until almost high slack tide (0940-1230). "The second drop was made at 1600° and photoETgpMed guey2 1920 foward the end? of the/ period of falting tide. The results are shown plotted in Figures 2.1-F3 and Fé,

A distinct river plume from the Manati River existed throughout the current measurements, A detached plume was Seen offshore north of Punta Manati while the river discharge was spreading to the northwest as shown in Figure 2.1-f5,

Eight drops were made for each of the periods with four nearshore and four parallel offshore. The drops furthest offshore moved slowly to the northeast then to the southwest and disappeared in a convergence. The offshore dye spots west of the river moved to the west at about 0.2 knots $(10 \mathrm{~cm} / \mathrm{sec})$.

The nearshore dye spots moved slowly to the west and wore dic persed in the surf except for the drop in the river plume.

Drop three, in the plume, moved at about 0.3 knots $(18 \mathrm{~cm} / \mathrm{sec})$ to the west initially, then increased to about 0-8 knots (40 $\mathrm{gp} / \mathrm{sec}$) to the west-northwest. The outer drop just north of the river plume was seen to partially disappear under the river plume.

During the afternoon, the turbid water was confined to the nearshore regions. The river plume flowed to the west along the shore. The offshore dye? spots moved westward and

Hiely?shoreward at 0,6 t0'0-9 Eases (30 fo dhe Sele) The drop just west of Punta Manati moved into an eddy toward? the river mouth. The drop nearshore just east of Punta Nanati disappeared in the surf after moving west at about 0-6 keats $(30 \mathrm{~cm} / \mathrm{sec})$. ?The drop in the innedfate plume was disperced rather quickly to the west. The outer plume moved west ner Palmas Aitas at about | knot (50 cm/sec).

The surface currents measured at Punta Manati were weak to the west nearshore and weak to the east offshore near the top of the flood. ?When measured near the bottom of the ebb, they were to the west at 30 to $40 \mathrm{~cm} / \mathrm{sec}$ similar to those Measured at Tortuguero Bay (Wood et al., 1975b) and at Tslote (PRWRA, 1975) as would be expected.

2.1.4 BATHYMETRY

Contour lines for 10, 20, and 100 meters are shown in
Figure 2.1-F! and offset depth profiles of the five Punta
Manati site transects are shown in Figure 2.1-FS. The depths were taken from Chart No. C§GS 903 (NOS. 1972). The shelf

---Page Break---

---Page Break---
pate ? 81 a
---Page Break---
Pte, Manati

Manati

1 Palmas Altes

Vertical exaggeration

Fig. 2.1-FS Offset bottom profiles along the sampling transects of Punta Manati. Vertical lines indicate relative positions of hydrographic casts.
---Page Break---
width is fairly uniform at Punta Manati at about 25 kilometers
to the 100 meter contour. The shelf is a little narrower to the northwest of the Manati River mouth suggesting a submarine canyon associated with the river. A broad shallow region exists just west of Palmas Altas with the broadest portion of the shelf about 2 kilometers west. There exist a few outcrops near the mouth of the Manati River and off Palmas Altas, but no extensive reefs are found here, The vertical lines descending from the surface (transect lines) in Figure 2.1-FS indicate the relative positions and depths of the $A, B y$ and C hydrographic stations. Most of the soun ings indicated on the chart were found to be accurate, However, the nearshore regions (<10 m) are not well charted.

2.1.5 TEMPERATURE, SALINITY AND DENSITY

The physical parameters of temperature and salinity Were measured at the Punta Manati site on seven cruises covering four seasons in two years (Table 2.1-T1).

TABLE 2.1-T1 Schedule of hydrographic cruises to Punta Manat
wrwTER SPRING sues PALL
i973 at s/t12 9/7 7
1974 4/28 8/22 2/1518uA

The hydrographic sampling grid is shown in Figure 2.1-F1.
A maximum of five north-south transects were made on each cruise.
Each transect had three stations. The "A" stations were nearshore (ca 18 m) with two sampling depths at 0 and 10 meters. The "BY stations were seaward in about 125 meters of water with four depths at $0,25,50$ and 100 meters. The most seaward sampling was at the *c? stations in excess of 325 meter depths at about $18^{\circ} 31.8^{\prime} \mathrm{N}$ latitude with eight depths: $0,25,50,100$, $150,200,250$, and 300 meters. The sampling, analytical and data processing procedures are described in?"A Manual for Hydrographic Cruises" (Wood, 1975a).

Temperature
Temperatures were measured using deep sea reversing
thermometers accurate to better than $\# .0,05^{\circ} \mathrm{C}$, The thermometers were used in pairs, or in triplicate when possible.

$$
10
$$

---Page Break---
Although only one temperature is shown on the computer printout of the data (see Appendix 2.1A) for each depth, these values are often the average of two or three thermometers. Most temperatures below \$0 meters were measured using both ?protected? and ?unprotected? reversing thermometers. A thermoneter depth, 12, was then calculeted for the sampling depths and correlated quite well with the calculated depthy $C Z$, obtained from the amount of hydrowire paid out, NZ, and the cosine of the wire angle, 0 . An example of this corre lation is shown in Wood et ai., (1975b)-
?The data were averaged by a computer program which first interpolated between the depths sampled to provide temperatures (and other hydrographic paraneters) at "standard depths." The averaged standard depth temperatures and salinities are plotted By season in igure 2.1-Fe.. The diagonal lines sndicate! density as sigma-t. Depth is not shown on the plot, but generally inGreases to the lower right corner of the plot, i.e., density
increases with depth. Very little change is een seasonally where signa-t is greater than 25.2, however, a definite change can be seen in the tower densities (surface waters), The temperature increases between winter and summer, while salinity increases between fall and spring.

The averaging for the depth profiles was done first for all stations by season (Figures 2.1-F7, 9, 11 and 13) then by type of station by season (Figures $2.1^{\circ} \mathrm{F} 8,10,12$ and 14).

A comparison of the averaged " C " station standard depth temperature data by season is shown in Figure 2.1-FI5.. A Sequence of events can be seen from this comparison, Surface temperatures were lowest in the winter $\left(25.6^{\circ} \mathrm{C}\right)$ with the deepest thermocline (100 m) caused by cooling and deep mixing by winter storms. This mixing process tends to carry heat to the depths

50 that the highest temperatures between 100 and 250 meters
occur during the winter. (This condition is also part of a Phenomenon one might call "seasonal lag.) Little seasonal Shange is seen below 250 meters. There was a steady temperature decrease in the 100 to 250 meter depth interval between winter and fall. No sharp thermocline existed during the spring season as relatively calm warm weather conditions allowed surface warming to occur. Surface temperatures were at a maximum in the
late summer months $\left(28.2^{\circ} \mathrm{C}\right)$ with a thermocline at about S 0 meters. There was a temperature range of about 2.6° between summer and winter in the nearshore surface waters at Punta Nanati.

A temperature inversion occurs in the fall as surface cooling begins. The thermocline was at about 25 meters with generally cooler temperatures between 75 and 100 meters than during other seasons. Very little difference was seen in the temperatures with distance from shore for any of the seasons. Bathythermograph traces from the " C " stations are in Appendix 2.14 and surface temperatures were mapped seasonally by serial infrared scanning (Wood, 1975¢).
u
---Page Break---

FwSewed-seu o

Fig. 2.1-F6 Tenperature-salinity of averaged seasonal date at Punta anati for the years 1973 and 1976,
---Page Break---
So 34353637
TC 16 1\% 202824 6B

100

3 xr4umo

2

2
t

200

300
[nan anaes Sena aenees eee
$\min 012$
ee PO$\}$ po-at P / X X10.

PMA-1

Fig. 2.1-f7 Averaged hydrographic parageters (temperatures, TC:
. salinity, '3*/oo; density, 4; dissolved oxygen, 025 and reactive phosphates PO) ?vs. standard aeerh 4 eters for the winter Season oF 1993 and 1998 ae Pinte Manat?

13
---Page Break---

50

100

14aumo6

100

200

300

5 mult
ce
o.t 23456

PCY po-at Pn x10, PMA-t

Fig. 2.1-F8 Depth profiles of hydrographic parameters averaged
by type of station for the winter season oY T39S
and 1355 ,
?
---Page Break---
Sloe 34353637
TC 16 1B 20-22 242628 \&

100
。

E
Pp

T

H
m
200
300
[a eee Ses ae
Qmno 112456

PO\} po-at P/lx10 Pye

Fig. 2.1-F9 Averaged hydrographic parameter depth profiles for the spring season of 1973 and 1974 at Punta Manati.
---Page Break---

507 (Pp olls o A
$100 \mid$
db oO c

E

P
T

H

100
m
PLofle |s

Oymino 123456

POA pg-at Pr x10 PMa-2

Fig. 2.1-F10 Depth profiles of hydrographic parameters aver:
by type of station for the spring season of 19
ang 18740 ON
---Page Break---

Tc
。

100

E
P
T
H
oy
Qmno 1426

PQ§ pg-at.P/lx10 PMA-3.

Fig. 2.1-F11 Averaged hydrographic parameter depth profiles for the sunmer season of 1973 and 1974"
?
---Page Break---

50

100

14umo)

100

200
mill Oo 126
p9-atPIxi0 PMA-3

Fig. 2.1-F12 Depth profiles of hydrographic parameters averaged
by typeof station for the sunmer season of 1975
and 1874,18
---Page Break---
TC 1618 20, 222426 2B

100
D
E
$\min 00123456$
POS pa-at P/1X10 PMA-4

Fig. 2.1-F13_Averaged hydrographic parameter depth profiles for the fall season of 1974 .

19
---Page Break---

S\%o0 34353637
Tee 16182022242628

${ }^{\circ}$ TB

504 |p a
$100<1 \backslash$

DO re
E

P

T

H
100
m
P° io Js
200 L
300
[nc ee
Op mill 0123456
PG po-at P/1xi0. PMA-4

Fig. 2.1-F14 Depth profiles of hydrographic parameters averaged by type of station for the fall season of 1974,

20
---Page Break---

TEMPERATURE ${ }^{\circ} \mathrm{C}$

1618 20, 22242628

3
5

Fig. 2.1-F1S Averaged seasonal depth profiles of " C " station temperatures at Punta Manati for 1973 and 1974.
a
---Page Break---
Salinity

Salinity, $\mathrm{S}^{*} / \mathrm{oo}$, is the total salt content of water expressed in patts per? thousand. It is used along with temperature to typify ocean water masses. Low salinity usually occurs at the surface and indicates dilution by Precipitation, runoff, or fresh water intrusions. High

Salinities are found in sub-tropical regions and are the result of high rates of evaporation, The salinities at

Punta Manati were determined using an induction salinoneter with the readings good to better than $+0.05 / 00$. The average seasonal salinity data are shown plotted against depth with the other hydrographic parameters in Figures 2.1-F7 through Fi4. It is immediately obvious that there is a pattern throughout the year for salinity to increase with depth (as tonperature decreases) toa depth of about 150 meters where salinity begins to decrease slightly becoming fairly uniform with depth at about 36%. This layer of high saLinity water with a maxinun of about 37% was forned by evaporation in the sub-tropical North Atlantic Ocean.

A comparison of the averaged " C " station salinity data is shown in Figure 2.1-F16. The winter salinity profile shows
@ generally low salinity in the upper 150 meters and the deepest maximum at about 190 meters. The shallowest maximum occurs during the fall season at about 125 meters. The fal] maxinum is lower than during the remainder of the year and the Lowest Surface salinities (34% oo) occur during this season. Surface salinities generally increase from fall to spring (34 to $36 \% 0$) then decrease through the summer into fall during the intensification of the tropical rainy season, A general increase in salinity was observed in the 25 to 125 meters layer between winter and fall with almost the reverse true between 150 and 250 meters.

The salinity of the Manati River is near zero, however, the lowest salinity at the closest " A " stations was about
32% indicating how fast the river water is mixed with the

Sea water. The depression of the nearshore surface salinity
rarely extends beyond the " B " stations. Isohaline lines have
been drawn from surface salinities for the fall of 1974 in

Figure 2.1-F17. The sampling was done during the night and
early morning when wind conditions were light from the east.

The tide during the time of sampling went from a level of 30 cm
toa low of 0 then a high rising tide of about 60 cm . The combi-
nation of Weak easterly winds and weak ebb current followed by
a strong flood current during the rainy season explains the .
extent of the Manati River plune.
---Page Break---

353637

- NYE
??
100
D
?

Pp
T 4

H
m
2004
PMA
winter

Spring 2

Simmer 3

Far 4

Fig. 2.1-F16 Averaged seasonal depth profiles of "C" station
salinity at Punta Manati for 1973 and 1974.

23
---Page Break---
---Page Break---
DENSITY of

20222426

100

3 r40mo
t) profiles of "cv
season for Punta Manati,

Fig. 2.1-F18 Averaged water density (si
Station data plotted by
1973 and 1974,

25
---Page Break---
Density
The stability of the water column is a function of
the density gradient. Density,\#, is @ function of temperature
and salinity, and always increases with depth in a stable
water colunn, Density is usually converted for convenience
to an expression signa-t, ©
ome-1) x 103. Qn)
Small changes in sigma-t with depth indicate a well-mixed or unstable zone, whereas a high gradient is indicative of a very stable region of the water column.

A comparison of the averaged seasonal sigma-t profiles is shown in Figure 2.1-F18. Sigma-t varies from 22 to 24 in the surface waters and is highest in the winter months. The pyconcline occurs at about 100 meters in winter because of deep storm mixing and generally cooler surface temperatures. The most stable water column occurs in the fall when surface water density decreases because of dilution. A general decrease in signa-t occurred from winter to fall at the surface, while the opposite was seen at about 100 meters, Very little seasonal change in sigma-t was seen below about 200 meters,

The tendency for slightly higher sigma-t values in the " station over the " B " and " C " stations noticed at the Tortuguero Bay site (Wood et al., 1975b) was not seen at Punta Manati probably because of contributions from the Manati River. Sigma-t profiles are shown in Figures 2.1-F7 through F14.

2.2 CHEMISTRY

2.2.1 DISSOLVED OXYGEN

The amounts of dissolved oxygen, D.0., in the water off Punta Manati were determined by the Winkler titration method with the analyses usually performed on shipboard within a few hours of sample collection. Sone of the values were checked with a YS1 polarographic probe with results similar to those Teported for Punta Higuero (Wood, 1974). The titration values were more consistent and generally higher than the probe readings. The titration values are generally good to better than * Tt; However, sone analytical problens were experienced on the 1973 winter cruise. Dissolved oxygen data are included with phe byatographic daca in the Appendix $2.14 \mathrm{in} \mathrm{mi} / \mathrm{t}, \mathrm{mg} / \mathrm{t}$ and

?sate

Oxygen saturation is a function of both temperature and salinity. Since neither shift drastically in the tropics little change in near surface D, O, is expected nor was it seen.
---Page Break---
Averaged D.O. values in milliliters per liter are plotted
with other hydrographic parameters in Figures 2.1-F7 through F14 by season and type of station, The highest values, except for the winter season, were found at about 100 meters.? Sur= face values were near? saturation with some super-saturation
at depths of 25 to 75 meters because of photosynthesis. A comparison of seasonal averaged values is shown in Figure 2.2-F1. ?The oxygen mininun occurred at about 225 meters for all seasons except fall where a very pronounced minimun was seen at about 150 meters. Slightly higher D.O, in the surface waters during fall and winter seasons is consistent with higher D.0, satura tion with lower temperature and salinity, Generally, very little seasonal change was noticed in D.O.

2.2.2 NUTRIENTS

Nutrients are important from two aspects. First, nutrients are generally low in the tropical Atlantic Océan surface waters and linit primary productivity. Second, the discharge of wastes from agricultural, municipal or industrial sources may contain such high nutrient levels that they cause eutrophication and local ecological degradation.

Reactive phosphate can be determined quickly and accurately with the Murphy and Riley molybdate blue complex Rethod (Strickland and Parsons, 1968) and is a good indicator of pollution. Only a limited number of nitrate analyses were performed on the waters off Punta Manati. The tropical and Sub-tropical North Atlantic is generally deficient in nutrients, especially nitrate. Reactive silica is usually not regarded as a pollution probien.
\ctive Phosphate

The concentration of reactive phosphate is generally low in the surface waters (0.05 ug-at. P/i), slightly lower in the summer and slightly higher in the winter as seen in Figure 2.2-F2. The levels of phosphate were uniformly to about 200 meters where they began to increase being 0.3 to 0.5 ug-at. P/t at 300 meters, The increase in phosphate generally coincides with the decreased salinity below the Salinity maximum. This is because the high salinity water was formed in the sub-tropical North Atlantic which is deficient in nutrients. Slightly higher phosphate values were seen in the nearshore surface waters, especially near the mouth of the Manati River, probably fron agricultural runoff,
---Page Break---

DISSOLVED OXYGEN mi/l
3456

100

3 r40mo

200
winter 4
Spring 2
?Summer 3

4

300 Fall

Fig. 2.
?FI Averaged dissolved oxygen depth profiles by season, 1973 and 1974,

28
---Page Break---
REACTIVE PHOSPHATE _ g-at. Pil
Oo |o1 0203040506

100
wi Favmo

300

Fig. 2.2-F2 Averaged reactive phosphate depth profiles by season, 1973 and 1974,
---Page Break---
Nitrate

Nitrate was determined by the cadnium-copper reduction method (Wood et al., 1967). Samples were analysed for nitroce at Punta Manati oniy for the fall 1974 season. (Nitrates have been done routinely at the Islote site about 3 kilometers to the west and the data is available in Kendall et al., 1975).

Nitrate profiles for the PMA-3A, B, and C stations are shown in Figure 2.2-F3. They are similar?in shape to the phosphate profiles for the sane season except that the higher Surface values for the " A " and " B " stations are much more pronounced. There is obviously a large source of nitrate in the Manati River region, possibly from agricultural sources or from industry.

30
---Page Break---
Nitrate g-at.N/I
2.4681012141618

- ???

B

100 PMA-3
(C) Oct. 31,1974

E

P

T a

H
m

200

300

Fig. 2.2-F3_Plot of nitrate vs. standard depth for the fall season of 1974 ,

3

3.1 GEOPHYSICAL PARAMETERS AT PUNTA MANATI by
 E.D. Wood

The beach outcrops are Pleistocene cemented dunes as gre the high grounds on either side of the Manati Riser (Briggs 1965). Much of the shoreline is composed of way consolidated sand (Figure 3.1-F1). Some of the sand aoe posits landward from the beach contain fine-grained quartz sand and clay, especially near the Manati River,

The cross-hatched area is alluvium deposited by eriodic river flooding (Hickenlooper 1967). Sediments in the shaded areas along the shore were deposited by storm and wave swash and wind (Fields and Jordan 1972),

Sediment deposits largely from the Manati River exist Seaward and to the west of the river. There is a region just east of the river mouth that is usuaily hard bottom? this nat just north of Punta Nanati covered by Station PUA-4h (Figure 2,12F1). It had been reported that sand moves on and off oF sone of the hard bottom, however, attempts to retrieve sede) ments from PMA-4A have been fruitless. The ocean bottom
areas shaded in Figure 3.1-F1 were drawn from aerial photographs taken in August 1973, Sand was visible near Panes Boquilla and north and west of the Manati River with a tongue gf sand running west just offshore north of Palmas Altas.

The sand deposits west of Palmas Altas were confined to several patches. Sediments collected at PMACTA, 2A, Sk, and SA Were Sieved and the results are shown in Figures?3 12F2 and F3. (All of the samples are uni-modal with the highest percent of sediment collected on the 38 (125 um) sersens The statistics for the sediments are in Table 34-1"

TABLE 8.1-T1 Statistics for the Funta Manati sedimente

STATION PMA-14 PHA-24, PMA-3A PUARSA
Median dé 28282927
Mean Ms 292.82 .927
sta. dev. 6 Os 0.6 O68 os

2
---Page Break---
?YaeueH waung ae saysodep o>ezans so sadds tedrouysa ta-4' $\$$ * 8 ta
---Page Break---
99.

101234 PAN 101234 pan
$B=-109, S$ um

Fig. 3.1-F2 Histograms and cumulative weight percent plots of sediments from Stations PMA-1A and 2A.

---Page Break---

99.5)

96]

95
|

Fig. 3.1-F3 Histograms and cumulative wei,
ght percent plots of
SA.
---Page Break---
The shape of the histogram of PMA-SA differs somewhat from those sediments west of the Manati River with over seventy percent of the sediment collected on the 3 f screen and only 0.48 less than 1 p .

The plume of the Manati River has been observed on numerous occasions. The dominant pattern is to the west along the shore as shown in Figure 3.1-F4, With periods
of light winds and a flood current, the pattern changes to the east with more spreading. On rare occasions (high river discharge and a near calm sea) the plume may be seen to spread in an arc several kilometers from the river mouth as a thin layer of muddy, low salinity water overlying the sea water.
?The river produces very little discharge during the dry season. The usually turbulent north coast sea conditions rapidly mix the river water with the sea water so that the
effects (e.g., low salinity) are rarely seen beyond the " A " stations even? during the rainy season.
---Page Break---
+(sez001q 10ys330 pur) 3uozand y>ets
Pue (pura nor) quosin> poor\} *(puyM Atsolsee pur)
quoaan> qa Buranp ountd xoary yivuny 943 Jo 1U93x9
ea93eT pur advys areurxoadde yi Suyzesyput wes8erg pa-i-¢ ?8ta
---Page Break---
4a ZOOPLANKTON STUDIES 1973
by
Marsh J. Youngbluth

4.1.1 INTRODUCTION

The foltoving report provides estimates of the abun
dance and density of zooplankton in the surface waters along a portion of the north coast of Puerto Rico. These data form one part of an environmental survey conducted by the Puerts Rico Nuclear Center, Ail collections were gathered in an area adjacent to the region proposed for the siting of a future
power plant. Samples were gathered on 3 days during 1975,

29 January, 11 May, and 7 August

4.1.2. MATERIALS AND METHODS

Field Procedures

Zooplankton were collected with a $1 / 2$ meter diameter cylinder-cone shaped nylon net. This net was designed to Teduce clogging error (Smith et al., 1968). Mesh size was 233 microns. The net was towed from a 1? foot skiff in a circular path through the upper 2 meters. The speed of the vessel ranged from 2 and 8 knots (determined with a Sims yacht speedometer). The duration of a tow was 10 minutes. After each tow, before the cod end was removed, the net was washed with seawater with the aid of a battery driven pump (12 volt, Jabsco water-puppy). The catch was preserved in 4. sea water formalin buffered to pil 7.6. All samples were gathered during the daylight hours. The volume of water filtered through « het was estimated with a flowmeter (TSK or General Oceanics Model 2030) suspended off-center in the mouth of the net.

The volumes usually ranged from 100 to 150 m . The meters Were calibrated every 2 months. Calibration factors fell within 8% of the mean,

At each site three tows were made in the area adjacent to the region where a power station may be located. Single tows were taken at the other stations. The regions sampled

Were chosen in such a way as to collect within and around the area where thermal alteration is likely to occur (Figure 4:1-F1).
oratory Procedures

Within 24 hours after samples were collected the pit was checked and adjusted, if necessary, to 7.6. If a saxple contained a noticeable conglomerate of phytoplankton or detritus, the zooplankton were separated from such material by gentic

38
---Page Break---
ssuoraeas woayuetdooz f2eueK wrung E761 JO UOTI"D0T
---Page Break---
filtration through 202 micron mesh netting. Before estimates
of biomass or numbers were made all organisms larger than 1 cm , usually hydrozoan medusae, were removed.

Biomass was calculated as wet volume (Ahlstrom and Thraikill, 1962). This estinate is subject to considerable error and? should be viewed only as a rough measure of standing stock. The measurements were reproducible but are undoubtedly biased toward higher than actual values by variable proportions of interstitial water and detritus,

The total number of organisms was estimated by yoluwetric subsanpling with replacenent (Brinton, 1962).? Three aliquots from each sample were counted, The abundance of major taxonomic groups of holoplankton and meroplankton were determined fron dilutions of 300 to S00 organisms. Copepods usually the most numerous of the zooplankters, were identified to species.

All biomass and enumeration data were standardized to a per cubic meter basis or multiple thereof. Data were initially reduced with hand calculators (Hewlett Packard Model 45) and more recently with a computer (PDP-10). See Appendix 4.1A for a listing of the prograr

4.1.3 RESULTS

A total of 21 samples was collected from 5 stations
(Figure 4. $1^{\circ} \mathrm{F} 1$). The densities of several taxonomic groups of fooplankton at each station have been deterained (Tables 4.1-15 through 17). These data are arranged to facilitate comparisons between sets of consecutive tows, nearshore tors, ands offshore tows.? The densities of total zooplankton usually afcered more between catches from aiffictent areas than? between consecutive samples fron one areas, The degree of Variation between samples is expressed ds a ratio, forned by Uividing the Largest total aumber of sooplankton by the. smaaest within each set (Table teleTi)s. The ratios are similar
fo those observed In other coastal regions around Puerto Rico. Another way of Judging differences between samples was deters inined by" careulating the variance. between consecutive. samples tnd estinating the husber of tovs needed to detect various levels of difference (Table 4<1212)-

TABLE 4.1-T1, Summary of ratios betveen the highest and lowest density

DATE 29 January 1 May 7 August

Consecutive Tows 1.218

Nearshore Tows

Offshore Toxs 2.92 .31 .3

ALL Tows 3.82 .8 3a

TABLE W.1-T2. Total zooplankton (logy transformed) from 9 sets of replicate tows. The number of replicate tows (n) needed to detect a 5 to 50% difference in density is indicated.®

DATE 28 January a1 May 7 August

STATION 112

2.691972 .561102 .33648
2.786752 .70759 2,18N69
2.73798, 2.715172 .19988
ast? se 7
2081

Were (+) fg Student's © for the 95\% confidence level
G2 (dufs2), 62 is the sample variance based on replicate
tous, and Φ ie the half-width of the confidence interval desired.

These data indicace that a large number of replicate tows would be necessary to detect density differences at the 5% level. However, on the average, differences of 201 can
be noted with only? 3 tows. Differences of 50% may be revealed with a single tow. Density estimates larger than 50% were found within and between nearshore and offshore catches. The range of density values during a sampling period was usually two to four-fold.

4a
---Page Break---

Seasonal changes in the abundance of total zooplankton at any station or among all samples fell within the sane range (Table 4.1-T7). The highest concentrations occurred in January. The larger densities, however, probably represent the range of variation among tropical zooplankton communities in the coastal waters around Puerto Rico father than recurrent Seasonal pulses since the 95% confidence intervals from each Station overlap (Table 4.1-T3).

TABLE 4.1-T3, Average density of ali zooplankton collected Total Zooplankton/ad

29 January 11 May 7 Avgust
Range seu-742 166-464 159-476
Median 550373299

Mean 80340202
?These fluctuations in density refer primarily to holoplanktonic organisms since they composed, in most cases, 60 to 90% of the total zooplankton. Meroplankton formed 3 ? to 25% and were equally numerous during each sampling period. Copepods dominated the holoplankton and the larvae of gastropods and carideans formed the bulk of the meroplankton.

Fish eggs were abundant in this area, constituting 2 to 25% of the total zooplankton (Table 4.1-T4). The largest density, 87/m?, was observed at Station 4 on 29 January 1975. Fish eggs were? somewhat more numerous in January and August when they averaged 39 and $33 / n$?, respectively. Most of the eggs were round and 0.5 to 2 mm ? in diameter, Oblong eggs Were common. It is not known which groups of fish are rePresented by most of the eggs.

TABLE 4.1-TH. Summary of densities of fish eggs from all stations sampled at the Punta Manati Site

STATION

Median 2\% 8a 2 ot 28
Mean 7 et 3 ot 23
a2
---Page Break---
Copepods formed 50 to 85% of the zooplankton community.
A total of 39 species were identified. Time did not allow
a detailed study of species abundance at all stations, consequently, one sample at Station 1 from each period was Selected for study. The entire sample was scanned to form a species list and subsampled for quantitative analysis. Using these data, the species most numerous, those connmonly observed, and others occasionally found, are listed in Table 4.1-TS.

TABLE ?.2-T5. Copepod populations observed at the Punta Nanati Site

Species usually sost nunerous (5 individuals/n?)

Clausocatanus fureatus

Faracalanus spp. (F- aculeatu
p,

Farranuia graciiie
Ofehona spp-(O- flunifera, 0. spp.)
Keartla spinaca 7

Tenora turbinate
Species cononly present (observed on 2 or more sampling periods)

Conyeacus spp. (C. giesbrechti, C. pacificus, C. epeciosue, C. subulatus)
Coryeacus, E: embawehes, ©- paciticus, C. spesicous, C- aubutatus)

Onewea spp. (0. Bedi terra jenusta, 0. ?Pi
valgaris
Salocalanis pavo

Rocynocera clausi
Species occasionally present

Eucalanus epp. (E- mucronatus, 2. app.)

Tasleutfa flavicomls
ieee
copii

Tabidecers spp.
icfa pachydactyla
?Herocatants longicornts Pontella piuats
Eis gracinis

Macrosetelia
---Page Break---

4.1.4 DISCUSSION

The variety and abundance of zooplankton observed at the Punta Manati site were similar at each station and throughout the year. Holoplanktonic forms dominated the yooplankton community. Meroplanktonic organisms, particularly the larvae of gastropods and decapods, and? fish eggs were equally numerous. No obvious patterns of distribution vere apparent anong the zooplankton sampled along the coast or offshore.

Limitations of the Da

The sampling progran was designed to provide quantitative estinates of" 1) the standing stock Of zooplankton,
2) the Variety of major taxonomic groups, and 3) the dic Yersity and abundance of the more numerous copepod species

The manner of field sampling determined the variety and bicmass" of organisms encountered. The data in this report are based on collections made in the surface waters during the daylight hours. The sampling gear and methods were Kept uniform, ive., ?net type, net mesh, towing speed, and depth range sampled, "A snail nusber of replicate. tows were gathered at each site to obtain sone measure of the variability? beteen samples.? To obtain a better understanding of the 200Plankton community More sampling with replication should be done at frequent intervals, at @ greater? nunber of stations, at different depths, during the day and night, and during ditferont. seasons for several years. Information gathered
in these ways will be necessary to interpret fluctuations. in Standing stock and diversity in relation to environmental changes in biotic interactions»
---Page Break---
?parnsvou 304 y
est eer we eeu eer est te ex800
ae eee ete een ers ors ge eusort
we ate wet 60L oss a ecro6z
s *e 2 ¢ of 77 sae
SuOTTESS TOES TS
sxoy ex0ussz0
nox exoysavon
nog axeoptdag exouszeext
--:-- yec80L
-- - : - : ? ?yeLsorT
sor ser veo" woes ae 440" 60" ta ectosz

5 *e242arsea
ses woes BORIS
exon 82009550 smo] esoysivey soy areorrday sacyszroy
ays Tieuey Hluha (jy ta) Werqueydoos Go SPEEORq THIOL ors save
---Page Break---
a er \% 6646 a evaOu

5 ez eos ost st st or cusorr
84 zo tom on ? se extosz,
s *e og Ff oF ow er aed
ToS aS SoS
smog, 21095330 ?snoy, sxoyeaeey, Sho e2t0F doy axoysseey
(gw /soqunu) uorxuetdozou jo zequau Teioz, ist" STEVE
cor ate coc ut eet sor ear ur exeoe
ser ne nue 092 62h Len 99m eee exsorr
coz sts Sut 929 6am orn nes erm ectosz
5^{*} et or at area
woes oS wre
smoy, e0uss30 snog o40yss00N ?snog aaRopTdey suoysizeox.
?ays FaruEy esung (<u/soqunu) uosyuetdoToy Jo Gequnu Teop su-t' g1eys
---Page Break---
et on not or or er eu804
oz wz zor cor 9 or eee exsort
nor zor wr ut ae one extosz
s*?24 eaeg
Woes TOES
snot a1048350 sno\} esoysaeOK, sno, s2eoFTday ssoysseen,
?(qWor/sequnuy syseuBoyoey> so aqua Te30], Tei-E'y STavL wn coc eet ue on z er eus0u
sore 16 uat ame ese ue eesorr
Sst oes. str een uae Ste sense sur08e
\$*? eof ox
Beas ROTTS
so, 8048330 sno s2oys.voy,
*ed¥s Faeueq Brung (,5/saqunU) spodedo> jo zequnu TwIOL
onL-tn Sava

4a
---Page Break---
eh oer son rez use ser are non evo
os cer sun the tHe ao 62 coz exsorr
etm oer 9ze as ose 26s coe extosz
s.e 2 t Es 7 * oaeg

SSPE ROPE ?BuoyaeaS
?smog, ax048350 sroy azoyss09K enon eyeoFTdey suoyexeoN
(_Wor/aequra) eaaey aeByTon Jo aoquna Teron etiets Sava
wots ee se 6 m uw z x 90
erst 6s one ore ner one fez eusorr
sr ase, woo oget ver 6 ser extosz
s * coz oaeg
Boas Ropes
?sno, 22098530 toy axoysseoy exoysaeey

S3FS TAPUEH EDUNg (,UOT/ZeqnU) SuveDeAleT Jo aogew THIOL chi-t'n aTeVE
---Page Break---
s we e+ 6 ze u * exsorr
oz + ok ek mom zz ectosz
s.ec oe or $<\&$ sea

BOTS OTS SRA
smog 94048550 smog sOyssoN smog axvortdoy axousseey
(guoT/aeqana) oeasey ueaniysesy Jo voqune Tel02 Sti-t*h SIEVE

68 mg or * eea0e

+ az ere ee ah a mr exsort
ese sor ze gee our Re ete ectosz
\$ * eo 2 oF oF * oad
os OPTS
nog, 82048330 soy axoysueoy nog savoytday suoyeuvon,
?anys Faeuey erung (,wOT/AoquNE) sPaLeT Woop] Jo aequU THIOL bint'h STGVE
---Page Break---
eee ee \& \% te ex80e
we mort st se 1 exsorr
ec © ene a * zt extose
\$ * e o@ © or a er wea

SOTTS ToS Boyes

sno 22048330 soy axoyssE6y sno oxeoFtdoy. asoysseon
(c2/soqmna) Bo ers Jo aequnu TwieL chiss TRVE
se? of ? eo oe exo
ze © 9 us wr eusorr
++ tk $+\mathrm{a}+$ extosz
$\$+$ + 2 ¢ or a ea
Tas TOTS Tas
mou 2048550
nop oxOyeseoy,
smog arvo;tdoy auoysseoy,

Toa7s FAEGUN BLung (,upT/TOquNE) SUBABDOPETD Jo ToquNT TOL Stir STEVE
---Page Break---
42 ZOOPLANKTON STUDIES 1974
by

Mary E. Nutt and Marian N, Yeaman

4.2.1. INTRODUCTION

?The following report provides quantitative estimates
of the biomass, abundance, and composition of the zooplankton
at Punta Manati on 14 May, 1S August, and 31 October 1974.
Comparisons are made with'1973 samples from the same 10-
cation, and with 1974 samples fron two other north coast

Sites, Islote and Manati.

4.2.2. MATERIALS AND METHODS

Field Procedures

Four stations were sampled on each occasion. Station 2 is located in 20 meters of water directly north of the proposed power plant site, and was sampled with three repli Cate tows. Stations 1 and 3 lie on either side of Station 2; Station 4 is offshore at a depth of 100 meters (Figure 4.2-Fi).

Oblique tows from the bottom to the surface were made with $1 / 3$ meter cylinder-cone shaped nets (202 u mesh) towed at 2 knots" Oblique tovs ensure that alt zooplankton species are sampled regardless of their position in the water column at the time of sampling. This is important since many planktonic organisms migrate diurnatly and will be found at Oifferent depths during different hours of the day. A 202 u mesh net does not readily clog with phytoplankton and captures @ wide size Tange of zooplankton. The net wag equipped with
a digital flowmeter and approximately 100 m ? of water were
filtered. Samples were preserved in 4\% buffered formalin.

Laboratory Procedures

Samples were washed to remove phytoplankton and detritus, and all animals larger than 1 cc were removed. Approximately 24 hours after collection, ?the biomass was measured by volume displacement (Ahlstrom and Thrailkill, 1962). Zooplankton abundances Were estimated by subsampling. The sample was poured back and forth between two large beakers until thorOughly mixed, at which time a subsample was poured out. Repeated subsampling of a single sample shoved all groups
of organisms to be randomly distributed by this method.

5
---Page Break---
?suoraeas uoryuetdoor yreuey wrung jo UOHIB201 La-2"b ?Sta
---Page Break---
In all cases, subsamples contained more than 450 animals.
Each animal was identified to major group and counted. The dominant copepods were identified to species,

When replicate tows were taken, confidence intervals Were calculated from the equation, r+
where is the estimated mean, t is Student's t-value, s ? is the estimated variance, and n ? is the number of samples.

4.2.3 RESULTS

Zooplankton found in the Punta Manati samples are listed in Table 4.2-T1. Copepods are invariably the most abundant organisms, followed by fish eggs, chaetognaths, and larvaceans. Other animals such as ostracods, pteropods, and gastopod veligers are occasionally numerous, but are not always present in the plankton.

Copepods were represented by 48 species, but 80 to 90 percent of these consisted of four species (Temora turbihata, Clausocalanus furcatus, Paracalanus sp., and Olthona unifera). Seven other species vere consisiently present femora stylifera, Nannocalanus minor, Calanopia americana, Acareta pinata, ?farranute gracilis, Coryeaeus Spoeand Sieawa spo). the ronaining? copepod? spores appeared sporadically and in numbers less than 5 per cubic meter.

Fish eggs ranged in abundance from 40 to 117 per cubic meter. Most were clear, round, pelagic eggs. No attempts were made at identification. Fish larvae ranged from 0 to 8 per cubic meter. No identifications were made.

No spiny lobster larvae appeared in the samples.

Table 4.2-T2 shows individual values, means, variances, and confidence intervals for one set of replicate tows made on 31 October 1974 at Station 2. Most of the variances are significantly higher than their means (x° distribution for the variance-to-mean ratio) which indicates a non-randon or "patchy" distribution. The confidence intervals are wide
but realistic for marine zooplankton distributions (Wiebe and Holland, 1968) and must be considered whenever @ mean

TABLE 4.2-T1.

HOLOPLANKTON

?COPEPODS

calanosde:

Nannocalanue ainor
Undtnula vulgaris
Fucalanus attenuatus
Rerocatanus Tongteorats
ierocalanus anderson =
Paracalanus aculeatus

Clausccalanus Furcatus
?Euchaeta marina

Beolectthnie danse

Tesora septs

Tenerepages furcatis
eet Aaeicorie eutla Plavicornte
Candacta p
pachyaactya
penal ee
Taptiseara ap

Halopetifs Tongicomie.

Harpacticoids:
Mivacia efferata
Wacrosetella graciiic
Ueuloustella gractTis.
Enterpine acutterons=
cyclopoid:

Ofthona plunifere
?Ofthona setigera
?Oithona oculata

Saphivel Ts topica
Son stasis

Sepia quadrara

SSevensus (eomeamns) easee = epee ?igetaad Face

Corycaeus (Agetus) limbatus

54

Zooplankton from Punta Manat
a2 a
us coryeaeus) Latus
Zoryeasus (jeaeus) agiite
Oneaee ?mediterranea

Saphieine
Farranala
---Page Break---
Table 4,2-T1 (continued)
?CHAETOGNATHS ?TUNTCATES
sagitta hispida
Eeptite eafacs Talia denocnati
Sees

Feta serrarodentata Pourourres
fronts Sut

PRerosagitta draco Tonopteris spy
 ARVACEANS ETOPROCT LARVAE

Ofkepieura sp. Menbranipora nesbranacea

Peteiiianis peazuciaa

GASTROPOD VELIGERS

PrEROPODS

Linseing leseurii ?ONECED LARVAE
?isscins retroverea CHRRIPEDE LARVAE
seeseie acieats

Sqifeta subule RINODERM LARVAE
ostracons ophteptuteus Larvae

Echinopluteus larv.

Euconchoscia chierchiae

FISH LARVAE

?MEROPLANATO FISH B63

[STOMATOPOD LARVAE,
ANpHTPODS

DECAPOD LARVAE
caridea
?Apheus sp.
feknthtyra op.
Penaetde
Seyliaridea

PaLicurus sp.
calatheides
Poreellana sp.
brachyara
sencrsrins
Lucifer sp.
cuapoceRans

Bvadne ep.
Fenftfa sp.

MEDUSAE

SIPHONOPHORES

CTEWOPHORES

55
---Page Break---
Se
TABLE 4.2-T2, Vartabitity among zooplankton replicate tove at

Punta Manati, Station 2, 31 October 1974 (Abundances
in numbers per cubic meter)
as

Total Chaetoz- Larva- Malacos-? Fish
Zooplankton Copepods naths ceans © tracane = eggs

Tow A aui2 113282 ve 37

Tow $¢ 17021968256818108$

Mean 1568 am 42 eo 882

Variance 21008 15276219, aa eo 519

BE C.T. 1208 to EK to «S\$ to 78 \$3 t0 1070 to 2926 to 19201878139
a

Figures 4.2-F2 and 4,2-F3 show the 951 confidence intervals for the more abundant zooplankton, groups at Station 2: copepods, malacostracans, chaetognaths, Larvaceaas, fish larvae, and? fish eggs, as well as total numbers, and biomass. Appendix 4.24 shows abundances of zooplankton groups for ail stations and sampling data. Appendix 4.28 shows abundances of the conson copepods species for ail stations and saapiing data.? With the exception of fish eggs, the zooplankton is Somewhat sparser at the offshore station.

4.2.4 DISCUSSION

Im both species composition and abundance, the z00-
plankton at Punta Manati is similar to that at Islote and Tortuguero Bay (Figure 4.2-F4). No important differences between sites can be seen; when a zooplankton group dominates the plankton at Punta Manati it can usually be found in samples from the other two sites.

Youngbluth's data from the previous year (see Section fala foERE ReROTE) show substanclally? fewer" tooplankton
than were found in 1974. This discrepancy is probably due
to differences in sampling methods; Youngbluth used surface tows, Nutt used oblique tows. (See Table 4.2-T3 for a comparison Of surface and oblique tows at Islote.) In general, the Same zooplankton groups and species were Seen both in 1973
and in 1974,

56
---Page Break---
Copepods

2800
2000 y 7
120 q d

Y

Ary
so" J 4 E
Ta May 18 Aug ST Oct Ta Way 18 Ag 3T Oct
Larvaceans Chaetoonaths
$100-\mid$ Y $100-\mid$
Yq
20 -| Y 80 Y y
wo, 4 «4 H 4
wo 104 Y
744
?go ?ly a ©

1a May 15 Aug 31 Oct 14 May 15 Aug 31 Oct

Fig. 4.2-F2 Zooplankton abundances at Station 2: 95\% confidence intervals for total zooplankton, copepods, larvaceans, and chaetognaths.

57
---Page Break---
Biomass

20
$60-\mid$

20-

Matacostracans

14 May 15 Aug 31 Oct

Fish Larvae
a

120-|

40 -|

T4May 15 Aug 31 Oct

Fish Eggs

ESSSSSSSS

a

SSSSSSSSSSSSI

15 Aug 31 Oct

14 May 15 Aug 31 Oct

Fig. 4.2-F3. Zooplankton abundances at Station 2: 95\% confidence intervals for biomass, malacostracans, fish larvae, and fish eggs.
---Page Break---

ISLOTE MANATI TORTUGUERO

proms 8 |
i
common 0 | ail!
|
J
|

Chaetognaths

Larvaceans

Malacostracans

Fish age

I
rome ||

15 May
20 Aus
5 Nov
1 May
15 Aug
ato Le
4 May
15 Aug
31 Oct

Fig. 4.2054 4 comarison of ssoplankton abundances at Tstote,
Panta?Manaet, and Tortuguero. Bay"
ue $6 e+818$
car L020 ns or 0 oer crm | on ne on est +10486
eo eee eet ?a 8 se sure \mid sete | eoursaey
z se se aw 996 e ose ceo roy
? ze 5 ze 1 st ne 9 ste 0
z zs a of us ee vom 280080
z ze $¥ 2$ su on 908808 sno
?mos anbTT90
aworol wos $06030=60$ sae 2 o| exe oro | «3-0 a6
toe o 80 m * ezso_| szeoz_| sourssey
t se or on. est ere wesk
t ee 98° * att 652 oneo

+ oe $\% \mathrm{az}^{\circ} \mathrm{z}$ sor a s260
t an z es ${ }^{\circ}{ }^{\circ}$ nse *0" st60
seasey usta | sy ysra | oearet avo | spodosasey [spooesasy | _ suseu | epodedoy | trou
2s s00eT eH ~Soi9e4
nox sovzins
(20x0m o¢qno aed soquny) sugt Trady LT
Z uoraess ?mors le sMca uoaxuetdooe soesuns pue snbyTqo Jo SoEpaEsaCO Y ?eL-z*y SIEVE
---Page Break---
With quarterly sampling it is difficult to assess
seasonality in the plankton at Punta Manati, but the data seem to indicate changes which repeat themselves. For example, the copepod Temora turbinata dominates the plankton
on 14 ?May 1974 , is sparse 0 : lugust, and appears again
on 31 October in numbers greater than before, This pattern
is seen also at Islote and Tortuguero Bay, At this time it is not known whether this repetition is seasonal or random, and there has been no attempt to correlate these fluctuations
with physical, chemical, or other biological parameters.

As both fish eggs and fish larvae are abundant along the north coast of Puerto Rico, we recommend that any further work at Punta Manati involve a? full-scale study of ichthyoplankton. Many of the reef fishes produce clear round pelagic

S, but so do the commercially important snapper, grouper, and Other food and game fishes, It is not known whether the eggs found in the Manati region are produced locally or by fish living in other areas of the north coast.

The existing data provide little information on the vertical distribution of the zooplankton. Since oblique tows capture more animals than surface tows, evidence exists that the majority of the zooplankton are not at the surface during the daytime hours. We recomend that oblique tows, or a combination of surface and bottom tows, be used in the
future. Studies at Islote revealed a significant diurnal nigration of Brachyuran and Caridean larvae (Youngbluth, 1974).

Future work at Punta Manati should include a study of vertical distribution and migration.

6
---Page Break---

43 BENTHIC INVERTEBRATES AND FISH STUDIES
by
Paul Yoshioka

4.3.1, INTRODUCTION

This report covers benthic studies made at Punta Manati from May, 1973 to August, 1974. The Punta Manati site was visited, but not on a predetermined schedule during this interval. Study stations ranged in depth from \$ to 33 meters.

The scope of studies ranged from preliminary descriptive
surveys to the establishment of a permanent station. Organisms examined in this study ranged in size from the microscopic infaunal populations to the macroalgae and fish.

During the latter part of this study a major portion of the investigative effort was spent on the macroalgae, Various aspects of the ecology of the macroalgae were examined as to distributional and temporal patterns of presence and absence, abundance, and species diversity,

4.3.2. MATERIALS AND METHODS

Field Procedures

Field stations at Punta Manati are given in Figure 4.3-F1 and Appendix 4.3. Field collections are divided into three categories: fish collections, transect dives, and station dives.

Fish collections. All fish collections were done in the nearshore (+5m) area. Fish were poisoned with roterone (PRONOX-FISH) and collected with dip nets. Fish were collected on four occasions. Sampling sites included both sand beach and rock areas.

Transect dives. Transects were traversed on a predeter-
mined compass direction by two divers, either swinming or
propelled by a diver propulsion vehicle (DPV). Notes were ' taken on depth, bottom type, topography, and dominant oF unsual organisms.

Most of the transects were run in a direction perpendicular to the shoreline, thereby transversing a depth gradient. Several transects were run parallel to the shoreline to observe changes in benthic communities relative to factors other than depth.
---Page Break---
FAtuEY kang 3 SUOTleRS PTOFS soFpNas ysTs puE OFUIUOT TH-e'h ?BL
---Page Break---

Stations dives. Dives were made at several stations to collect quantitative samples. Algac and bottom substrate were collected in $1 / 4 \mathrm{~m} 2$ samples. Replicates were taken whenever possible. Algae were sampled by hand, and bottom subStrate with the aid of a hammer and chisel, Both were placed immediately in plastic bags held adjacent to the collecting
site. Algae and/or bottom substrate were collected at stations.

Photographs were taken when conditions permitted to aid in the general description at the area, The presence and absence and relative abundance of the iarger invertebrates and fish were noted during the latter stages of the investigation.

Laboratory Procedures

Aigal, and substrate samples were brought te. the Laboratory sorted in phylogenetic groups, and preserved in 70\% ethyl alcoho or 10% formalin for later identification. References used in identifications are listed in the bibliography, The samples Were often frozen prior to sorting. When sufficiently abundant, both the dry and wet weight of the algal species were recorded.

4.3.3 RESULTS

Description of the study site. A fine-grained blackish sand, probably of terrigenous origin, was found to be the predominant substrate in the immediate vicinity of the mouth of the Manati River. The same substrate was observed at depths over 25 meters, about $1 / 2$ mile offshore of the river. No dermersal fishes were observed in the sandy areas, The only noticeable benthic organisms were occasionat patches of the plant Halophila, observed at 25 meters. Other organisms ob-

Scrved on the sand habieat at the Punta Menai sige were. the sand dollar Nellita sexies perforata, the sea pansy Renilla sp., the starfish Astropecten sp., and the crab Callinectes sp

Beachrock is the predominant substrate offshore from the rocky headlands to the east and at depths less than 15 meters to the west of the Manati River. The substrate is usually flat, although at places a depth gradient is noticeable. Occasional rocky outcrops or depressions up to 1.5 meters high, or deep, and several meters across are encountered.
lard coral fauna exists (<1\$ surface cover). Occasional gorgonian colonies are found, principally Pseudopterogorgia fol-
ot
---Page Break---
Most of the fish life observed ($\sim 90 \%$ of the individuals,
2708 of the species) occurred in the vicinity of rocky out:
c£ops or depressions: Also, the urchin Diadema and the deli-
cately colored hydroid Stylaster were found only in such areas.
Shelter appears to be a najor factor deternining the presence of these animals. Stylaster grows under ledges and Diadena was found only in crevices.

Fish and large invertebrate species observed and identified at the Punta Manati site are listed in Appendix 4.3B. Fish species collected at the nearshore poison stations are listed
in Appendix 4.3C.

Quantitative Sample:

Infaunal and epifaunal species identified in the $1 / 4 \mathrm{~m}$? substrate samples are listed in Appendix 4,3D. Excluding algae and colonial forms, a total of 48 species were found in the three substrate samples. The numbers of individuals Were quite equally distributed among the species. Most species were represented by only one or two individuals which sug: gests that they are "rare" or relative to the quadrat size. ?or instance, the 14 species found in replicate A (Station 3) were represented by only 22 individuals and the 11 species in replicate B by 17 individuals. The "rareness" of the species probably accounts for the lack of similarity between the samples;
only one species was found in common between replicate B (Station 3 and Station 1), and 4 species between Station | and replicate A (Station 3). ?the lack of similarity between the samples cannot be attributed to large-scale habitat differences. Replicates A and B (Station 3) had only three species in common although the samples were taken a few meters apart. It would appear that due to infaunal distribution patterns, the $1 / 4$ me quadrat is inadequate to representively sample the infaunal community.

A total of 28 algal species were recorded from three quadrat samples at Station 2 in June 1974 (see Appendix Only 11 species occurred in all three samples, but these species accounted for 88% of the algal biomass.? These Species also showed significant concordance in their relative abundance in bionass \{Kendall Concordance Test, $\mathrm{p}<0.01$), in~ dicating that a $1 / 4$ né sample gives an adequate portrayal of the algal community structure. The dominant algal species in decreasing order of abundance ?were Dictyopteris plagiogranna, Bryothannion triquetrun, coralline algacy Pacocktelia eariegata, ant Anansia aiTtt fda.? these species accounted ter over BOF of the total algal biomass, Algal biomass ranged from 182 to 219 g. (wet weight).

Samples taken at Station 2 in August showed several differences. Algal species diversity was lower; each rePlicate contained 13 species. In June the nunber of species per
---Page Break---
replicate ranged from 16 to 20 . The difference is significant at the 0,1 level (Fisher Randomization Test). No correlation was found between the relative abundances of species in the two replicates, consequently, algal community structures derived from these replicates may be artifacts of sampling variability. However, the more abundant algal species appear
to be coralline red algae, Dictyopteris plagiogramma, Bryothamnion triguetrum, and Halimeda Giscoigen

The two replicate samples taken at Station 4 in August displayed an even greater amount of variability. Algal bio-
mass ranged from 3.6 to 119 g per $1 / 4-\mathrm{m}$ and the number of algal species from? 6 to 15 per quadrat. No correlation was found between the relative abundances of species in the two replicates. However, the most abundant algae was Sargassum polyceratian

A significant correlation between the relative abundances of algal species was found for the two replicates taken at Station 3 in June (Kendall-Tau, pc.0S), Algal biomass ranged from 304 to 588 per quadrat which was greater than the algal biomass at Station 4 in June. The dominant algal species in decreasing order of abundance were the coralline red algae, Dictyopteria plagiogramma, Anansia multifida, Bryothamnion
triquetrun and Botryocladia occidentalis, These species account for over SOF OF the algal biomass,

In summary, no trend was found for algal biomass through tine or depth. ?Algal species diversity increased with depth (Stations 2 and 3 in June, and Stations 2 and \# in August)
and decreased from June to August (Station 2). However, these trends were not significant at the 0.05 level.

4.1.4 DISCUSSION

The most noticeable difference of the benthic biota between the Punta Manati site and the Tortuguero Bay site, a few miles to the east, is the dominance of the algal comminity which is probably associated with the exposed condition of the Punta Manati site. Most of the Tortuguero Bay site is sheltered by Punta Chivato from the predominantly northeasterly swell.

Visual estimates of the cover of the hard bottomed
substrate by algae ranged between S 0 to 80% depending upon station or season, The relatively high abundance of algae Suggests that competition for substrate space may play an
important role in the algal community. Competition usually tends to reduce species diversity. However, algal species diversity was at least moderately high; the number of algal
---Page Break---
species found in any single $1 / 4 \mathrm{~m}$? sample ranged between 6
and 20. Grazing by urchins has been found to maintain high
algal species diversity in other algal communities (Paine and Valas 1569, Ogden et al., 1973). flowever, only a few indi= viduals of? the urchin Diadema were observed, all of which occurred in crevices oF other sheltered positions, No other Racroinvertebrate grazers have been observed in the area. The only other algal grazers observed were schools of surgeon fish, Acanthurus spss

Consequently, if competition is a major feature of the algal community and'if the effect of grazers is minimal, then other ecological processes may be responsible for maintaining algal species diversity at Punta Manati, One possibility is the role of physical disturbance. If environmental changes on a time scale are roughly equivalent to the generation
fine of the competing species, competitive exclusion Will not occur (Hutchinson 1961). ?Several factors suggest harsh, possibly seasonal, changes in the benthic environnent at Punta Manati. The Punta Manati site is exposed to the predominant northeasterly swell and its accompanying surge and scouring action. When visited, the rocky substrate at Punta Manati was always found to be covered by a thin layer ($\sim 4 \mathrm{~cm}$) of sand which suggests considerable sand movement across the bottom. In addition, Diadema were always observed in crevices or other protected situations whereas in other less exposed
areas along the south coast they are often found in open water. The greatest abundance of gorgonians and hard corals was often found on rock outcrops where they would be less exposed to scouring action.

With sufficient physical disturbance in the forn of surge and scour, the domination of the bottom substrates by one or more algal species could be prevented. Further long term studies would be required to test this hypothesis.

Limi
ions of the Data

From May 1973 to the present, benthic studies at the Manati site have been headed by a number of different investigators. As a consequence, the research enphasis has changed in the course of this study.

There are little data relevant to seasonal or other
temporal changes in the benthic communities at Punta Manati. ?The preliminary portions of this study were necessarily concerned with general descriptive surveys of the Tortuguero Bay site. Only gross temporal changes in the benthic communities would have been noted in such circumstances. Studies at permanent stations did not begin until the terminal portions of this study, and with site visits only occurring on a quarterly basis it was impossible to distinguish between seasonal and other temporal changes in the biota.

07
---Page Break---
If the ultimate goal of any environmental study is the prediction of the effects of a pollutant on a natural community, many of the parameters which have been examined (species lists, distributions, biomass, diversity indices)
in this or other investigations, though often necessary as preliminary studies, are inadequate in this regard. Distributional studies?or species lists no matter how complete provide little insight into the interactions of their component species. Diversity indices are highly speculative in their origin and their ecological implications remain a source of controversy (Fager 1972, lledgpeth 1973). These parancters
provide only a static outlook on a community.

What is required is an awareness of the dynamic processes responsible for the control and regulation of natural communities. In order to predict the effect of a disturbance Such as thermal pollution, first it is necessary to understand the mechanisms which maintain the organization of @ community, and then how these organizing mechanisms will be affected by this pollutant (Dayton 1972). Several studies have shown that ecological processes such as predation and competition are responsible for the observed structure of many natural communities (Janzen 1970, Harper 1969, Huffaker and Kenneth 1959, Brooks and Dodson 1963, Hall et al., 1970, Paine 1969, Conell 1961, Dayton 1971, Paine and Vadas'\{969, Kitching and? Ebling 1961, and Ogden et al., 1973),
---Page Break---
44 PLANT ASSOCIATIONS
by
Michael J. Canoy

4.4.1. INTRODUCTION

The north central coast of Puerto Rico is bounded by a narrow beach/dune community. The mean height of the forest
is 2-4 meters with coconut paims rising higher

The prime site at Punta Manati occupies a low hill just east of the mouth of the Manati River. The area is predominantly sand, consolidated beach rock and limestone.

Piant communities in and around the plant site are typical of the area from Palmas Altas to Tortuguero. There are four distinct major conmunity types. Two of these, moist asslands and successional "fence row? communities, are junan artifacts. The other systems, the beach conminity and Secondary growth mesophytic communities on the two hills are disturbed but more diverse. Mango, Mamey and Cupey del rio trees occasionally occur up to 30 feet tall.

The exposed beach and oceanward face of the dune represent a continuous attempt by plants to maintain themselves in a high energy environment. Cne of the worst things that can happen to this association is disruption of the dune integrity. This allows erosion to begin and the association to be washed away.

4.4.2 MATERIALS AND METHODS

For the adjacent north coast sites (Tortuguero Bay,
Punta Manati and Punta Chivato) a simple survey method wa:
used. Beginning $1 / 2$ kilometer west of the Manati site and continuing $1 / 2$ kilometer east of Punta Chivato, a transect following the coastal highway was covered. (See Figure 4.4-F1). Within every kilometer a 10 meter transect was walked on both Eides of the road. The major vegetation along this transect was noted and unknown species were taken to the Mayaguez laboratory for identification.

At the end of each sample transect a one meter square was sampled for grasses, vines, and forbs. A common plant species list for the Punta Manati area is given in Appendix 4.4A.
je area was surveyed for animal species, also. Appendix 4.43
---Page Break---
?suoyaeyoosse queqd 105 Aoains woxe yaeuey eaund ?La-py"y ?Sta
nva20
DHNYAY

07314 TWwnoiss30ns_JS
AS34804 DHAHdOSaW SW
mou 30Nas Yd

ALINMWHOD 34OHS/HOVIE SQ

Tawny.
?om

70
---Page Break---
lists vertebrate and invertebrate species observed during the study period. None of the species observed is known to be on any list of threatened or endangered species. The species lists derived were smaller but very Similar to the extensive lists derived from the study made at Barrio Islote
(see Environmental Report for NORCO-NP-1), therefore it was Assumed this method was qualitatively accurate.

4.4.3 RESULTS

Generally the vegetation can be divided into four distinct community types: beach community, secondary growth mesophytic conmunities, moist grasslands and successional "fence row" communities.

The beach community is largely composed of lponea spp., Sporobolus, Kyllinga, and Remirea. This community is a very wagit entity and Cepands of contfacts monthiy. Ta storm periods it may disappear entirely and return a season later.

Beach thickets more or less extend from the mean storm wave level into the edge of ?the pasture and fields.

The seaward edge of the thicket is about one meter in height.
This increases inland to about \$-6 meters. A few coconuts, almonds, and Tabebuia reach 8-10 meters.

Mesophytic growth here is typified by Chrysobalanus,

Byrosonima, Naney, Cupey del rio, with undergrowth of Smitax, Nepsera, Portulaca and-Crototaria? ?The beach xevarch is typically dominated by Iponea, Remirea, Coccoloba and Lantana.

Chrysobalanus and Tebebula are developing 50 to 60 meters from the-shores

Secondary growth is typically composed of human satellite plants such as Tabebuia, coconut, almond, and black olive. Fiamboyan and Cassia trees appear occasionally and Maney apples have been planted. Around "fence row" communities

Id human habitation are bananas, plantains, oranges, and avocados. These plants should be surveyed for resident background radiation (total beta and gamma spectrum and total) prior to operating any nuclear facilities.
n

REFERENCES.

Ablstrom, D. H. and J. R. Thraikill, 1962. Plankton volune loss with time of preservation. CALCOFI Rept. 9:57-75,

Almy, C. C., Jr. and C. Carrion-Torres, 1963. Shallow-water stony corals of Puerto Rico. Carib. J. Sci. 3(2§3):133-162.

Anikouchine, W. A. and R. W. Sternberg, 1973. ?The World Ocean: An Introduction to Oceanography, ?Prentice-fiail, Inc..,"Englewood Cliffs, N.J-

Bailey, R. M. (Chaiman), 1970. A List of Comon and Scientific Names of Fishes from the United Statés and Canada (Third Edition. Aner. Fish. Soc. Publ. No. 6:1-149.

Bayer, F. M., 1961. The Shallow-water Octocorallia of the West Indian Region. Martinus ?Nijhoff, The Hague, Netherlands.

Bigelow, i. B. and W. C. Schroeder, 1953. Fishes of the Gulf of Maine. Fish and'Wildl. Serv. Fish. Bull. 74, Vol. \$3, U. S. Dept. of the Interior, GP, Washington, D.C.

Bohike, J. E. and C.C.G. Chaplin, 1968, Fishes of the Bahamas and Adjacent ?Tropical Waters. ?Acad. of Nat. Sci, of Nat. Sci. of Phila., Livingston Publ. Co., Wynnewood, Pa.

Breder, C. M., Jr., 1948. Field Book of Marine Fishes of the Atlantic Coast.
G.'N. Puthamn'S Sons, ?New York,

Briggs, R. P., 1965. Geologic Map of the Barceloneta Quadrangle, Puerto Rico: 1-142. UI S. Geological Survey.

Brinton, E., 1962. Variable factors affecting the range and estimated concentra?tion of euphausiids in the North Pacific. Pac. Sci. 16:374-408.

Brock, V. E., 1954. A preliminary report on a method of estimating reef fish populations: J, of Wildl. Mgmt.? 18(3):297-308.,

Brooks, J. L. and \$. L. Dodson, 1965. Predation, body size, and competition of Plankton: ?Science? 150:28-35.

Carpenter, E. J.) S.J. Anderson, and B. B. Peck, 1974. Copepod and chlorophy11 Concentrations in receiving waters of a nucléar power Station and problens
associated with their measurement. Estuar. and Coast. Mar. Sci. 2:1-25.

Casey, J. G., 1964. Anglers guide to sharks of the northeastern United States ?Mine to? Chesapeake Bay. bur. of Sport Fisheries and Wildlife, Circular 179, Washington, D. C.

Corvigon, F., 1964. Los Corycaeidae dol Caribe suroriental (Copepoda, Cyclopoida). Mem. Soc. Science Nat. La Salle. 24:163-201, n
---Page Break---
Cervigon, F., 1966. Los Peces Marinos de Venezuela, Tomos I y II, Monografias Nos.'11y 12, Fundacion La Salle de Ciencias Naturales, Caracas.

Grace, F. A., 1972. The shrimps of the Smithsonian-Bredin Caribbean Expeditions with a summary of the Nest Indian shallow-water species (Crustacea: Decapoda:

Natantia), Smith Contr. Zool., No. 98.

Chaplin, C.C.G. and P. Scott, 1972. Fishwatcher's Guide to West Atlantic Coral Reefs.? Livingston Publ. "Co., liynnewood, Pa.

Clark, H. L., 1935. Scientific survey of Porto Rico and the Virgin Islands. A?handbook of the littoral echinoderms of Porto Rico and the other West

Indian islands. N.Y. Acad, of Sci. 16(1).

Connel1, J. H., 1961. The influence of interspecific competition and other factors on? the distribution of the barnacle Chthanalus stellatus.

Ecology 42:710-723.

Darwin, C., 1854. A monograph on the subclass Cirripedia. Ray Society, London: ?Repr. by Johnson Reprint Corp. (1968), New York.

Dawson, E. Y., 1956. How to Know the Seaweeds, William C, Brown Co. , Dubuque, ?fowa.

Day. J. H., 1967. A monograph on the polychacta of southern Africa, Parts I and Ii. British Museum (Natural History), London.

Dayton, P. K., 1971. Competition, disturbance, and comunity organization: ?thé provision and subsequent utilization of space ina rocky interitdal community. Ecol. Mon. 41:351-389.
" 1972. Toward an understanding of community resilience of the potential effects of enrichments to the benthos at Meshundo Sound Antarctica.

Proc. Coll. Conserv. Prob. in Antarctica, Ed. B. C. Parker, Allen Press,
p. 81-85.

Dukin, W. J. and A. N. Colefax, 1940. The plankton of the Australian coastal waters of New South Wales.? Univ. Sydney Dept. Zool., Monogr. 1.

Elton, C., 1966. Animal Ecology. Sedgwick and Johnson, London. Fager, E. W., 1972. Diversity: A sampling study. Am, Nat. 106:295-310.

Fields, F. I. and D. G. Jordan, 1972. Storm-wave swash along the north coast of Puerto Rico; HA-430." U. 8. Geological Survey.

Fraser, J. HI. and V. K. Hansen (Eds.), Fiches d' identification du Zooplankton. Conseil Permanent International Pour 1'Exploration de la Mer. Andr. Fred. Host § Fils, Copenhague.

Frost, B. and A. Fleminger, 1968. A revision of the genus Clausocalanus (Copepoda: Calanoida) with renarks on distributional patterns in diagnostic characters. Bull, Scripps Inst. Oceanogr.

Glynn, P. W., 1964. Conon Marine Invertebrate Animals of the Shallow Waters of Puerto Rico. Inst. Mar. Sci., Univ. Puerto Rico, Mayaguez, 3
---Page Break---
Goldberg, W. M., 1973, The ecology of the coral-octocoral comunities off the Southeast Coast of Florida: geonorphology, species composition, and Zonation. Bull. Mar. Sci, 25:465-488,

Gonzalez, J. G. and 7. E. Bowmn, 1965. Planktonic copepods from Bahia Fosforescente, Puorto Rico, and adjacent waters. Proc, U, S. Nat. Ms. 117(3813):241³04,

Grice, G. D., 1960. Copepods of the genus Oithona from the Gulf of Mexico. TRAIL. Mar, Set. 10:488-490.
1961. calanoid copepods fron equatorial waters of the Pacific Ocean. ish. Bull. 61:1-246.
1963. A revision of the genus Candacia. Zool. Medelingen.
eT.

Grigg, R. W., 1972. Orientation and growth forms of sea fans, Limmol. and ?Oeeaoge 17:185-192.

Hal, D. J., W. E, Cooper, and E. E. Werner, 1970. An experimental approach
\{to the production dynamics and Structure of fresh water animal communities. imnol. and Oceanogr. 15:839-929,

Harper, J. L., 1969. the role of predation in vegetational diversity. Brookhaven ?Symp. Biol. No, 22:48-62.
artman, W. D., 1988. A collection of sponges from the west coast of the Yuedtan Pehinsula with descriptions of two new species. Bull. Mar. Sci. Gulf Carib. 5(5):161-189, and A color key £0 the sponges of ia Parguera, Puerto Rico. ?Inst. Mar. Biol., Univ. Puerto Rico, Mayaguez, No. 1789.

Hedgpeth, J. W., 1973. The inpact of impact studies. Helgol. wiss. Mures. 4: 436-445,

Hickenlooper, 1. J., 1967. Floods at Barceloneta and Manati, Puerto Rico; HA-262. U.S. Geological Survey.

Huffaker, C. B. and C. E, Kenneth, 1959. A ten year study of vegetation changes ?associated with biological control of Klamath weed. J. Range Manag. 12:60"82.

Husclnan, K., 1966. revision of the genus Lucicutia. Bull. Mar. Sei, 16:702-747,

Hutchinson, G. E., 1961. The paradox of the plankton. Am, Nat. 95:157-145.

Hyman, L. H., 1955. The invertebrates: Echinodermata. The coclomate Bilateria. VoL. 4

Janzen, D. H., 1970. Herbivores and the number of tree species in tropical forests. ?An. Nat. 104:50-528.
ass,» 1972. Polypacophora of the Carithean region. Stuies on the fauna ?Of Glracao?and other Caribbean islands. 41(13)):1-162,

Kendall, T. R., E. D. Wood, and T. Smith, 1975. Hydrographic data report, north coast of Puerto Rico, 1975-1974, PRNC Report=177.

74
---Page Break---
8

Kinzie, R.A

UII, 1973. The zonation of West Indian gorgonians. Bull. Mar.
sel. 2s)
$138!$

Kitching, J. A., and P. J. Ebling
1961. |The ecology of Lough Ine XI. The control of algae by?Paracentrotus Livi
(Echinoidea). J. Animal Ecol. ?30:373-383.

Laubengels, M. de, 1956. A discussion of the sponge fauna of the Dry Tortugas in particular? and the West Indios in general, with material for a revision of the fanilies and orders of the Porifera. "Publ. Carmeg. Inst. 467
(Paps. Tortugas Lab. 30):1-228,
1949. Sponges of the western Bahamas. An.Mks. Novit. Woes.

Manning, R. B., 1959. Key to the genera and species of Western Atlantic Stomatopoda. After Schmitt, W. L., The stomatopods of the west coast of Anerica, ?based on the collections made by the Allan Hancock Expeditions, 1933-38. Allan Hancock Pac. Exped., (4) :129-255.

Mclean, R. A., 1951. Scientific survey of Porto Rico and the Virgin Islands. The Pelecypoda of Porto Rico and the Virgin Islands. N.Y. Aead. Sci. 17(2).

Menzies, R. J., and P. W. Glynn, 1968. The comon marine isopod crustacea of Puerto Rico. Studies on the Fauna of Curacao and other Caribbean islands. 27(008) 1-133.

Monroe, W. il, 1971. Geologic map of the Manati Quadrangle, Puerto Rico-Map T-ie7, U's.6.81, Dept. of the Interior-

National Ocean Survey, 1971. Tide Tables 1972, NOMA, U. S. Dept. of Comerce.

National Oceanic Survey, 1972a. Tide Tables, 1973, East Coast of North and South Anerica, NOAA, U. S. Dept. of Comerce.
? \qquad ., 1972, North Coast of Puerto Rico, Chart No. CUGS 903.

NOM, Dept. of Comeree, Nov. 4, 1972.

National Weather Service, 1973. Raw weather data taken hourly at San Juan Intemational Airport. NOiA, Dept. of Camerce, San Juan.

Nutt, M. E., 1975. Islote Environmental report, 1975. Puerto Rico Nuclear Center. Ogden, J. C., R.A. Brown, and N. Salesky, 1973. Grazing by the echinoid Disdena antillarum Philippi.? Formation of halos around West Indian patch reefs. Science 182:715-717,

Opresko, D. M., 1973. Abundance and distribution of shallow-water gorgonians in the ?area of Miami, Florida. Bull. Mar. Sci. 28:535-538,

Ovre, J. Bs and M, Fayo, 1967. Copepods of the Florida current. Fauna Caribaea 1:1-137. ps

Paine, R. T., 1966. Food web conplexity and species diversity. An, Nat. 98:97-108.

15
---Page Break---

Paine, R. T. and R. L. Vadas. 1969. The effect of grazing of the sea urchin, Strongylocentrotus, on benthic algal populations. Lim, and Ocean." 14:710-791.

Park, T. S., 1970. Calanoid copepods from the Caribbean Sea and Gulf of Hexico,?2. New species and new records from plankton samples. Bull. Mar. Sci, 20:872-546.

Provenzano, A. J., 1959. The shallow-water hermit crabs of Florida. Bull. Mar. Sci. Gulf and Carib. 9(4):349-420.
1961. Pagurid crabs (Decapoda, Anomura) from St. John, Virgin Islands, with descriptions of three new speices. Crustaceana, 3(2):151-166.

Puerto Rico Nuclear Center, 1972. Preliminary report on the survey of, Tortuguero Bay site for the installation of nuclear power plants. Report to Puerto Rico Kater Resources Authority, Aug. 23, 1972.
1974. PRNC-174. Punta Higuero power plant
?cavironmental studies 1973-1974. Report to P.R. Water Resources Authority.

Puerto Rico Water Resources Authority, 1975. North Coast Nuclear Plant No. 1 Environmental Report.

Rathbun, M. J., 1933. Scientific survey of Porto Rico and the Virgin Islands.
Brachyuran?crabs of Porto Rico and the Virgin Islands. N. Y. Acad. Sci. 15(1)

Roos, P. J., 1971. The shallow-water stony corals of the Netherlands Antilles.
?Studies on the fauna of Curacao and other Caribbean islands. 37(130) 1-108,

Rose, M., 1933. Copepods pelagiques. Faume Fr. 26:1-374.

Schmitt, W. L., 1935. Scientific survey of Porto Rico and the Virgin Islands.
Crustacea Wacrura and Anomura of Porto Rico and the Virgin Islands. N. Y.
Read. Sci. 15(2):125-277.

Schultz, G. A. 1969. How to Know the Marine Isopod Crustaceans. Willian C. Brom Co.; Dubuque, Towa,

Shoemaker, C. R., 1935. Scientific survey of Porto Rico and the Virgin Islands.
?The amphipods of Porto Rico and the Virgin Islands. N. Y. Acad. Sci.
15(2):229-262.

Smith, F. G.W., 1971, Atlantic Reef Corals. Univ. Miami Press, Coral Gables, Florida.

Smith, P. E., RC. Counts, and R. 1, Clutter, 1968. Changes in filtering efficiency of plankton?nets due to clogging under tow. J. Cons. perm. int. Explor. Mer. 32:252-248,

Smith, S.V., 1973. Factor-analysis of presence-absence data in Atlas Kanesha Bay: A Reef Ecosystem under Stres

Strickland, J. D. H. and 7. R. Parsons, 1968. A Practical Handbook of Seawater ?Analysis, Bulletin 167. Fish. Res? Bd. Canada, Ottawa.

78
---Page Break---
Suarez-Caabro, J. A., 1955. Quetognatos de los mares Cubanos, Mem. de la Sociedad Cubana de Historia Natural. 22:125-180.

Taylor, W. M., 1960. Marine algae of the eastem tropical and subtropical
?Thomas, L. P., 1962. The shallow water anphiurid brittle stars (Echinodermata, Ophiuroidea) of Florida. Bull. Mar. Sci. Gulf Carib. ?12(4):623-604.
?Treadwell, A. L., 1939. Scientific survey of Porto Rico and the Virgin Islands. Polychaetous ?annelids of Porto Rico and vicinity. N.Y. Acad, Sel. 16(2): 151-319,

Van Name, W. G., 1930. Scientific survey of Porto Rico and the Virgin Islands, The ascidians of Porto Rico and the Virgin Islands. N. Y. Acad. Sci. 10(4) 405-535.
? \qquad 1945. the North and South Averican ascidians. Bull. Aner.

Ths. Nat Hist., 84,

Vicente, V. P. A key to the sponges of the West Indies. Unpubl.

Wamke, G. L. and R. T. Abbott, 1962. Caribbean Seashells. Livingston Publ. ?Co, liynnewood, "Pa

Wiebe, P. H, and W. R. Holland, 1968. Plankton patchines repeated net tows. Linnol! and Oceanogr. 13:515-321.

Williams, A. B., 1965. Marine decapod crustaceans of the Carolinas. U. S. Fish?Wildl.?Serv. Fishery Bull. 65(1).

Wood, E. D., 1974. Punta Higuero power plant environmental studies 1973-1974. PRNC-174,
" 1975a. A Manual for Hydrographic Cruises. In preparation (as a PRNC Report, 1975).

Wood, E. D., M. J. Youngbluth, M. E. Nutt, P. Yoshioka and M. J. Canoy, 1975b.
?Tortuguero Bay Site Selection Survey, Puerto Rico Nuclear Center, Mayaguez.

Wood, E. D., 1975c. Aerial infrared scanning of discharge regions of present and alternate power plant sites. Puerto Rico Nuclear Center, Mayaguez.

Yamaji, I., 1973. Illustrations of the Marine Plankton of Japan. Hoikuska Pub. Go. Led.

Youngbluth, M. J., 1973, Results of the plankton survey at Bahia de Tortuguero Punta Manati and Quebrada de Toro. 1 yanuasy and March 1973. Unpubl.
report, FNC.
?? \qquad 19748. Die1 changes in the composition of a tropical,
?coastal zooplankton comity.
n
---Page Break---

Youngbiuth, M. J., 1974. Diel changes in the composition of tropical 200Plankton assenblages from coastal waters around Puerto Rico." Unpubl. report, PRNC.
,1974c. Survey of zooplankton populations in Jobos Bay.
?Unpubl. report, PRNC.

8
---Page Break---
euoqazpuc> uyer
snoyaea ayeoypuy sequmt soulyH
sPupdoreasp zo Ow/tro mwserdysate>
Baya103 Krrexoue2 ?spmot eo o-keseya-ute>
ssmoy 36° Suzanp
Foghat? saea9N uoy3dzs9seq ope
aya 30 e8uey> *potaeyoun So oreo cams
Dyas;aa3o8s TOUR oy UO Aye 509383 i
Teerissoerrag stow ot uo AX 50983820 saava GNIA-¥aS 30 auVIS
*pedotessp set Buywooaq so
Aupatossrp AtresOUes spnOld TO
?spnoto adeoxe ?_-arqeauseqo 304 so ponies
?sxos2ss0uphy on =o 30U JuamoTeAeP PROT 00
+60 x03 adoaxe ?anoy Suspeooad
943 Bupanp to uoyreaiseqo jo outs 943
ae dyys oy3 ae nous Surazyap uo ?wsoxe
pues ?usoasienp +80; ?uoyaeaydyooad ON ?6T-00
swozeatesgo 50
?woOu ontq so) used3-KeFn
Tq Ueoud 20) ontg-YoyUDeA
Te
fous 04a 3° deus ou av uoraeazdzoozd ON *Eh-00 vent doeg--?-?-----00 oyadza9e0q ?p09

009 avis waEEvaM ?3000 1V0S WOTOD ALVA "EOI

" 8000 STZ ? 0° - INMOAV QXV gaxL aNOTD ?ALTTEEISIA *waHIVaN ?QNOOTS Id SUSE NI - GTIAS OXIA

*SaNoO8S NI - GOTHId AVA
"000 SAVK GNIN SIZ ?OH = LHOTaH GAVA
?Hdd 9810 IHoOaS ~ AONTAVESNVAL
*t0º ${ }^{\circ}$ X HAIG ONTTAVS MAMIXVR $=$ HLdzO "daVS-XVH
wi'e xaonaday
---Page Break---
equa up passsoo Aye 50 aunoey
"2009 43409 an0T9
?aco ALTarerstA ?Moo NoTuogara ssvaKoD
---Page Break---
seve
or-Wna

27930 B¥MLUYICHI1 =» S3DUBL Hat DCNUBHLAMIUS
---Page Break---
sete gyi9e er
Boy eae'e ar+92 ${ }^{\circ}$
SHid30 CuvONYIS ez 2ze
ger9z ot 8 et ot
ety ee" geese sy-92 OD
9:7 $08^{\circ} 2 \mathrm{a} 0$ "2 Orr9z BE-92 Myr92 2T Bk

SOM@ Ayse V/9K /7H 1-915 NITWS GAYE ML LONE 2k 29 Bet

N3oaxo da ca) Lea)

666" wOLDVS T33HH_BBLGH 266" _Y3LTL N3DAx0

2 Mowy 3ulM et 41430 KYW 9¥907 GGTT ?1nd GGT BHI, SSIH T 1S¥D
a ¥O102» LHOT3N 3AYR LAY ONDTD 940 OTWNH 138 Bt eEe99e 9NOT tae 430 TINS @ D3KIC 3am 8 3eA1 ONO7D B"@ LIK gwSL ON 2ta-BTLYT \#eyaSivua gg D9KTC ONIM «C ALITIBISIA @rez keO gud erst enon

9 Goluad 3AYA gt 2073A GNIM 20 M3HLV3M O'BTOT ?ORYE E¥/TA/ 29 GVO £62220 32N¥343y ONHa YFewd NoTivAS 228381069 ORKNTY. A
e2
---Page Break---
vere
6606
Sc:\%6
scte6
stre6
32'96
ary

68'56
S2te6
ie ASK
9)
a
29'y
sory
aw

Na9AxO

42 3ony 3ulM
et wo102 4HO13H
d30 DINOS aa O34T0
© UdSNNEL 60 O3ul0
@ GOluad 3AVK et 90738
t66"

Dy

3am
3AM
ont
NIM
?Vezez@ 30N3¥3s3u INMe

Mia!

。
e
a
za
sagroe
cre"98
ssurse
aster
oosrce
aes'se

2erron

Teerse
vostas
a
zor eet
19626
wer92 as

962 og

Lotse ee
orez at
apr e
Sh4g30 GuyaNYLS 162 2ze
U6'v2 gate Loe? ST 968 oT
e192 Baro eer92 218 eas
dgs2 gore devez Gt oo 6 £2 2
Oy'92 ayroz es92 TE @ ag
AVL WU NS BL 20 Sun
ow cay 41430

MOLOVS 733KM 8913 66" U34IL N3DAKO

30 xVA O01 LTT

AWY On072 \$48 GIKNH 738

34A1 00079
@ 13H aw3L

AATUBISIA \$22 480 aW3L
waHLVIN geezet?OUVE
@t-vid NOLLVAS

?1nd TST JWI, SSIK T usvD

* £tpg+99@ 9NOT

Ngttf-or YT
Ter uno
se/ter 28 L¥0

228 3SINY2 oBHNTYd Ay
a
---Page Break---
gesro8 aerct
So9-9R aerat
ByLt99 L615T
928-99 9Et2z
1957989989
attr $990 c+s z$

4s'a0t oe'> 60L'6e aye
186 vetp 269'sR et9z

66546 2Ltb Terr ocr9z

rs 2uty eesise 6or9z

Carrs ety Besice Braz

SHid30 GuVONTIS ?a6z zee

S2iy Lv'92 sis'os Ottet Bere et-et ot tee eoz oes Gry Ter92 Gs9'9e Borat Bore GeraT Zt chz Te ace 6979 90º 92 vEci9e O2'0Z Ba'e Bz"oz Gt Bez Er ade TSty Gyece peer9s e922 ectzz Terzz TE 8 Set OST WWL9IS NIWS 3AYL ML TL NS BL 8D Sutn

NZDAXC dw tay H1d30
466° MOLOVS T33HK BBLS 66" YILTL N3OAXC

ST FNONY 3UIM Gat HLe30 XYW 9¥907 966 ?LN GET GHIL SS3K 2 LS¥D
see v2 $966^{\circ} 9$ @ @ 9^{\prime} 'NZ BOD By'HZ St BE 65 Bet
6:9 yOry G¥is2 GEL'Ge Or'9Z Gore ey9z Zt by as aS
v9 Zety vers? Sul'Ge BE'SZ GO" BE9z GT 12 G2 Sz
0:9 2c Ge's2 apgice Bx ${ }^{\circ} 92$ Tr'oz Se'92 TS ook 8
Won WW LOIS NITS 3AYL WL TL ON BL 29 Sut
N394x0 awh «ay Hia30)

466" YOLDV4 T3ZHN Y3L3W 166" USLTL_N3DAXO

Ot 31OW 3YIN GBT HLd30 KYH 1V9O1 Szet ?LHD pT GNIL SSIH TF LsvD

40703 AHQIIM BAYH ¢ _uWW GNO72 228 OIWNW TZU MH Bt ye-998 9NOT @zeg 430 31N0s ?93810 3avm «8 3dA1 GnO7D aR 3M gwIL ON OT TE-AT YT se avdGNvHA «TT -D5ul0 GNM §?@ ALITIBISIA G²Z AUC gW3L ret non

Gezzze 30NIU3494 ONKS OT-¥W NOLLYLS 228 381nND oBHNIs Aw
---Page Break---
8G'96 6919 o9ty cetez zegtce Orr9z er
9296 LLY ¥L'y GESZ ROG'SE THt9Z @
SHid30 GuvONvLs 262228

So 66196699 99"y GEre2 zoErse Ovr9Z BB'a By'9z Gt Tr AT BT
dat 92496 Lc'9 pty GEEZ ogrse Tyt92 Tht9z Byioz Tr Be

SOKe AVSx VOW T/1W LOIS NITS GAL KL LON FL dg SUT
Na94x0 du3L (ay M630)

466" WOLOYS 733HH B313N 66" YILTL N3DAXO
@ 37ONY BUI BS -HLg3C KYW 1¥907 wHTT ?LHD ¢7GT BNI SS3H T LSVO
ry 40102» AHOI3H 3AYH -< _Ldy GNO72 \$28 GIHNH TZ C*Ee=998 9N07 6200 d30 DINOS 8a 93410 3AYH «8 da GNOTD «ATE 13M GHA NB*6z-8T YT fe eyaBNNAL $=6893410$ ONIN ALITIGISIA $9^{\circ} 22$ AMO aWaL CST non

G Goluad 3AVK GT D0T3A ONIN Zo MSHLVIH BtATOT = OWS «L/Ta7 2810 262220 30N3U3434 ONue Va-vkd NOLLYLS 220 38Iny2 ogHntyd Aw
a5
---Page Break---

224909
atics ects
9yr69 Lute
99'ae 95'S
gras $22^{\circ} 9$
6¢a0T a6'9
orteot 2ere
?29s

Beree

S6*oat $96^{\circ} 89$ cay
YELIN SOM ?LYSK 9K 177M 191
NBDAXO
468"
Ot TONY IWIN get Hig
at xon09 AMI3H 3aNH 2
eta 30 JINOS Ga O3ul0 JAY 8
eydSNVuL gg -D3NIO GNIK 8
@ Goldad 3AYH «gt 073A anim ze
yore?
\$1982
$9^{\circ} 92$
a 792
$\operatorname{tg} ?$
yr92
T5192

SI

atte aoe
$5200^{\circ} 2$
re'se ago
192 as*9;
S NTS 3A, AL
dn
wOLd $¥ \mathrm{~s} 73348 ¥ 3$ LIH

30 XvW W907 acct *
any anova)
4anon3

ALIgigiA avez
WIMLy3m $9^{\circ} \mathrm{cto}$ T

@2-YWe NOTLYAS

eer
SL
a6
a

22
er
e
Hid30 GavONYiS ?gez 220
?i162 9T 40\% g6 got
@yr92 2T 6h by Bs
pers? ct 1292 s 7
2 te 2 tt 88 eb
TL Ne FL 20 3atn
3a (a) 1430)
s3ery BILTL N39Axo
AnD @ำT 3HIL SS3K Tt LS¥D
THK 738m LiEe-998 9NOT
Aa dWL ON 6tag-eT LT
AWD @W3L 6*6T non
uve = ee/tey te iva

228 3SInND guns Au

88
---Page Break---
azte
gata
acre
az'e sot

YELIN SOHe
at yor09
@4e@ 430 DINOS
2 eyaSNVEL
9 Goru3e $3 n ¥ H$
sezeze

Tete arto acheo8
stty ass" 9 ¢
grct9s
g9ct9¢
209798
eterog
aclse
T2968
629'50
et9"68
8629'S
ety Le'92 terton
Sty Gc'92 esscor
Sty att92 escc9e
\#2" 26's2 c9L"9e
Win 1 als Niivs
?grat ees
orrat aez
te-22 zez
grize act
Terre eat
apse \&e
292 re
?a ee
a az
oer er
oee e
SHid30 GavaNris |
eoret Goret et Tee 662
ore 8 t Syt8t 2 yz ace
teraz Terez <t 902 vez
Ote2z st+z2 ut+22 TT @ est
GAYL MLNS BLD
ant Hy a

466" wOLOVS T33HM_¥3L3W (86º W3LTL_N3DKKO
TONY 3UIN G?E HLd30 KYW VDOT T28 ?LHD w'ZT WIL SSIN
agree Toy cerb2 26998
vies ws'e2 accrss
?Laat gerez sr
vt"66 zrrse zy-se

AYSK 191s Nrvs
serve Tetez gy wet oat
aeive zer9z 238 s ag
?e"92 ?gr92 gt 12 gz
ger9e oeroz tt ae

3AvL TL NB BL a9
cy HL
£66" MOLOWS 133M _43LIH £66" _Y3LTL NIOAK
BIONY BEIM @OT Mid3O KYA W907 fre ?KD C*eT 3KIL SS3H
£ ADIZH BAYH _LwY Ono? 988 OTKNH T3H\& Ct EeH99\%
a 93NIO 3AVN G 3dAy ONOTD «A 13H HHL TRAST
9T D3u10 ONIN B ALITIBISIA Z* ${ }^{*}$ 2 AUC GHIL tet
s@ 2073 ONIN 28 wIMLVIR «GOT ORV EL/Tey 20

3ON3W3434 ONNE D2-Yad NOTLYLS 22@ 381n¥9 oBhaTI

92220
gor
ese
gee
ast
Burm

430

2 aso
eer
as
sz
a
Burm

230

T iso

2 9N07
ca)
snow
iva

We ne
a
---Page Break---

2 s0t2
290"
2 Sota
2908
aore
20
este 20 '2
enre
aore
aera
aare
WuLIN SoMa
2
at 009
4620430 31N0S
eo dydshyaL
\& o1w3d 3AVH
cezzee
esac sets vere
US'T6 9249 aety
zztaet go's To's
161661889 TA"y
TOT 669 en's
TEQOT vere $32^{\circ} \mathrm{C}$
IGroTT 98'L US's
uote 49's este tree
US'B0T £649 GO"y 6F'S7
£966 989 GL'e He 'EZ

FerorT $99^{\circ} 4$ este ex'sz
AYSK VOR VW 1 SIS
NBgAxO
iset x
2 TONY BIN eet HLa3\}
y AKOlaM aaye 2
a2 93ul0 Zaye 8
a2 23810 ONly 8
2\% 30734 ONIN Ze

39N3U3 434 ONHE
ptytoe $2 u^{\prime} 82$
642799 90"52,
acerse co*92
paerse T9'92
fa9'cp cbr9z
299768 ap*92
$2 y 9 r g e 25^{\circ} 92$
s2aroe T9's2 a2
2ye59 av'92 ao:
T6959 20ºㅇ2 a
$2 y 96 n 25^{\circ} 92 \mathrm{Te}:$
NETS)? 3avL
OL2¥s 733KM B3L3H
O KYH WOO) 9zET
Any on079 aaa
Bea Ono79 88
ALtUeisin avez
waMLyaM $0^{\circ} 07$
at-wie NOTLWS
ear
?
a
a
\#2
ar

e

sHie30 GuvONVIS eee cee
*@ te'c2 et 20T 96 act
ta ep9z 25 ae uy as
ta 292 et a2 42 ge
?oz asto2 tT oe
Wi Uk BL 2D BT
anu cy 4430
$e e^{\circ} t ¥ S L 1 L$ N39Ax0
?inD p65 JWIL SS3H T 1sva
OtknH 734 ctzg-99@ 9NOT
Le gW3L oN tOR-aT LVT
ABO GKIL pt6t now
et Oud Sv/Tey te 3i¥o

220 381N¥D OBKNIYE Aw

88
---Page Break---
uetes

Smig30 GuvONVIS 98220
geo t9:4t ot 662 Lez gor

B 2G:8t 2192 gre ace
@ 96:82 Gt get tst ave

22 62:22 TY 8 bes aGT

We LNB BL
awa (a) Hi 30
gets gure
49ty gate
e265 uc's
v2\$ 20'9
9K 7K

N39Ax0

466" HOLOV4 T33HM 93L3H BTO'T HaLTL N3DAKO
G3 FIONY FHIM Gos HLg30 XYH 9 Y907 Bret ?LKD CBT SWIL SS3k 2 LSWO
a top versz eersz eT <6 oat oat
a ger9e 21 cy ac ag
@ 292 et 92 gz ge
?a 8 yy ${ }^{\circ} 92$ Shr92 Syeo2 Tr a 8
WeLIN: SOHe WN 29 3¥In
N394x0) 41830

66" MOLDV4 T33HN_¥3L3A wFerT WALT
@ 37ONY HIM eet HLg30 KYW T¥D0T @ ET ?umd BrOT 3)
at wor909 By zaye £ awy anor gue clMnH 138» gtze-99@ 9n07
a2r0 430 31NOs 13M gwd @tageer LWT
dSNVUL?@@ 93810 ONIN 82 Aud aW3L crT now
jd NV Zt -3073A GNIM zretet = ouve«eu/tey te diva

9ezzz@ 30N3¥3438 ONNE Of-ved NOLLWLS 228 9SIONd caKniYs Ay

N394x0
1 883K T Lsvo

3 oot
---Page Break---
Qe'y cetez ezy9n 22762 er

99:82 peerse oor 9 z si
| wE182 wAoiSE HL 92 as
6006 Tuty Gyts2 g2g'ge Sbr92 es ares fete ayts2 gcse 2 v -92 ez

65'66. Ber BErE2 aserse Srrve er £8" Loter BERTSE Let9e e

SHLd30 CuVONTIS vez zee
! pet 92768 bete 2 vagics oc 92
ve gars Sy182 699'Ge Te'9z Bere Trr92 et (2 62 G2

826 6etant a6: 9782 gag'ss ce'92 Op'92 Bergz Tro 8G
YULIN SOME LYSK 179K V/TH LOTS NITS SAYL WL LNG FL 20 SEM

N30Axo aha Lead
@ 2262 9t yet oar get
2 ger92 276 ag es

66" wOLDVS T93HN_Y3LIK BEATTY waLTL NIDKKO
y STONY BUI eT Hid3d xYH DOT 2TEy ?UWO 2"?T JKIL SSI T isyO

Og 40102 LHDI3H 3AYH 2 Lu GOT 24a GINNH 138» gt TE-990 ONOT
v8Za 430 DINOS G9 D3KIG 3aYM @ Seal Qno1] ate 13K andi ay)
e bydSNVEL «gg 93410 GNIM @ ALITIGISIA 2"92 AHO anal wow

9 Golw3d 3AYH Zt D0T3A GNIM 29 W3HLVIM GreTOT = OMY Ez/TEy te BLvO
\} 922z@ 4N3N3434 ONue Qy-vad NOTLWLS 228 3SINwD oaNnIYd A \&

90
---Page Break---
at
sz
v2!
ot
art

YELIN SOME

20"
pe
to
eo"

YeLIN SoMa
?
wor09
avta 430 91N05

?

uvasnves
oordad Ave
sezzze
seies $26 r-9 n$ goret eer
sto peston 26185 oaz yte9 ezL'9e Bree age s2tce B94"9p £2422 est 92426 Bayron 29"62 eat *86 TRB $92 r+92$ se 2926 BtLr6p cer92 as ae a6 Baden Let9e ee errs 2996" $60^{\circ} 922$

Te'96 Peo 2092 ar
staat T29'e6 G19 e
Shie30 GavONvis ez zza
zeteo Byi9z vastos sere au'a eret ot 62 t 6 z oor
eer es TE'92 goGr9e BL'8T ae'd PLteT 2t Tez zee B52
bad 26752 Teds9e L94G2 gerd Lyre2 ET BET pes Bae
sttoc 4yrs2 Sea'98 Tyee Ty2e Pyr22 TE a Get BST
ASK LOIS NDWS GAY Wi UL Ne zy BD Gute
x3 cay 1638
£66" yOLDV4 133KM BIL3K BTO'T YALTL NIDAKO
TRIN FUIN BEE H143O KYW TVIE7 vrET ?1Wd CLT 3WIL SSIN 2 4SWD
g2t26 tet9 asrioe $29^{\circ} 62$ o'o $^{2} 29^{\circ} \mathrm{C} 2$ at 16 eat got
25:26 98"9 StL769 Le'92 Bare Le'92 2F Be ee aS

2279 Gory Seis? BL9'Se GE'9Z QO'D BETS2 CT Ge G2 Ge
SEtIOT A679 LO"y BEEZ T29ºGe Gor9Z GH'92 Geroz TT oc AYSK VOW 7H LOIS NIWS ?3AYL KL 1. NE BL 20 uTy

N39ax0 aH3L cay 11430
466" MOLDV4 TI3HM UIL3N BEET UILTL NIDAXO
B79NY BHI BT H4d30 KYM WWDO7 S yF ?LWO Tver 3KLL SSI T ISO
y AWOlaM 3AvR 4 Lay GnO12 Tea GIWNH 734 ot $\mathrm{Te}=9 \mathrm{em}$ ONO
@9 93NIC 3AYH 8 34k1 O07] ate L3H gH3L td OTTR=BT LWT
@@ 23y10 ONIN @ ALITIGISIA Erez kuC awl Lect whom
2\% 90734 GNIM 2a waMLVIN GTeTAT OME «au /Tey ta Suv
3ON3U3434 ONME Oevad NOILYLS 228 3S1N¥9 OaKNTNS § wy

9
---Page Break---
sare
yore
yore
sore
6a
sare
zee
wait SOKe
(${ }^{\text {B }}$
at ot0a
ete 430 INOS
© byasuvaL

QolW3s 3AtH
eezeze

Serve e249 9e'\% Bein? etOtoR TeHZ

6O'k \$4"9 BEty GEE? eB OR Te+sz
TEI96 T9'9 OO'F GP'Se averse ey i9z
GEtas LL"9 octy avie2 seoree LEt92
QgtAs Lc"9 bc'y Te'sz T29ºGe LEte
Gh'Ls 1219 69'y Ov'cz HTO"Ge ET9z

S6tya 8279 oety Betyz ETOTOR TErHZ

TE'96 19'9 S9'w BOTT? Zecise ay r92
$9^{\circ} 86$ BL'9 Scythia? S29'Ge LET92
6996 G9'9 99"\% BEtEz Lagtee BEr92
aYSx 9H 71K 1 91S NTS) ANE

N39Ax0
664 wOL9v4 133K LIK

B0ONy 3uly get M183!
y AHOlaN 3AYN funy ano7D
a 93ufc 3qvR @ 3uAs GnO7D

Qa O3uIG ONIN GALI TIAISIA

27 073A ONIN 28 uaKLV3e

39N3N3438 ONNG
suig30 GuyoNvis
ero tetye or
2° Ay" 92 ZF

Qere sg'92 Gt
av'9z BE:92 TT
Pree veant)
wah

YH WOOT 2vzt ?AND ¢r9T FI

$8 \mathrm{~g}-¥ a d$ NOTLWLS

yea Oth T2e
3
a
p
@ iat gH
4280 awd
eta One
?ss
ay
$6 t$
a
$65 e^{\circ}$ T BLL N39AXO
eat
se
es
es
ez
et
e
sez 220
ear at
es as

2 \$2
o 8

29 Juin
mid 30
ssvo
9×07
ca
nos
teste te 3Lv0

220 3SinwD ogHntyd Aw

2
---Page Break---
ezt
ze"
a
ar

VELIN SOHe

sot
fo"

20"
ga"

YULIN SoKG

e
at xot09
\$48e 430 SIN0S
uyasnvas
@ colw3d anvH
zerzze
aztec apt 6r'oz

Tetye Tet geroz
ete 0"» a0'97
setay
acraet
ctaet

2ttec
ootee
sere
R64ey Zork itz Ostcz

ASK 9K VW LOTS

66"
JNoNy 3ulN Bae HLa3)

98166 n6'9 CBT y Atty?

46" 20t 46"9 CB'y oste2

66'e0t 669 9R'y cree
ab'B0r @6'9 ce"y z¥re2
ayse VW 77H 1 OTS

N394x0

466" a
FIONN SHIR eT 183

2 AMOlaH GAYN \&
6093810 Say 8
2t O3u10 ONIN @
929073 ONIN

30N3U3438 ONMe
gcr98 v9tet
seston ester
56998 B6t6T
etree
c's?
pared
592
se:92
verge
28:52
agree
got
Soret
$20^{\circ} 22$ oe
eactos £T'22 2t
NITWS3AYL

O19¥4 193HH 83434
0 xv W907 156
tty 99 6Lt62 B2
pecise sor9z
LE9ํ.58 SE192 Bi
$219^{\circ} \mathrm{G} 6$ as-92 62
NEWS) $3 a \nsupseteq L$

JO19¥4 133M 831K
any 0079 get
adku ano19 ae

ALTUAISIA $6^{\circ} 92$

MaMLyaM 9 ez

26-¥ae NOTLWLS

one
$a c z$
ea
ast
eat
se

86
a

2
er

SHLd30 OuyONYIS a

99:e8 ot
ss'at zt
@ 2e'a2 ¢t
*22 St: 22 1h

Hi Na
na

662662
?v2 62.
66T 66T
@ ect
zap
Oo ML
$6 \mathrm{TO}^{\circ}$ T B341L N39Ax0
? IHD $6^{\circ} 87$ BWiL SSIW

106 cr 62 et
ta stroz at
ta egtoz et
92 T8192 1h
WL NS
na
et oot
rad
we a
ee
21 a0
oD my
s50우 3LTL N39Ax0
9 xv WOT Tat ? 1 KO wept 3WIL SS3W

OtnoH 138
43M awa
Auo ahaL
et Gave
ee 220
ws
sz.
aoz
ast
3uln
430

2 uswo
et
as
<2
a
Berm

630

1 asvo
h 9tae-998 9n07
\@'Teeer
grat
eu/tey to
av
now
3uva

220 3S19w9 CaNnIvd Ay

93
---Page Break---
cust ?tr how
azo-va ?ON os pnzy

37930 FUNLBNIeW3i = S FOB HasBOOUSIHLAMIE

---Page Break---
fez george teee
" 82 2p6rge $82^{\circ} 42$
---Page Break---
£062 ot

3 Ty $\$ 9^{\circ} 92$ er
very ees 2 t

70"y oF" Perla e012 vo012 TE

TELIN Sota T/7K 1 OTS NITYS) SANE UW one

$\mathrm{N} 394 \times 0$ ae

SHie30 GuvONYIs
(ay 1 e 30

66" BOLOVS 733Hm 233K ys@'T B3LTL N394xO
2 STONY FEIN BOT M1430 XVK 1907.9 az ?IKD Tº? SKI Soa T As¥O

BONO ANDI3M BAYH © Luv gno19 98 atanH Tau
Sore o30 Simos Sa 1332 BAYH 8 dks anon] Ota Lam ana

BvASNYEL 62 D34I0 ONIK Z AITBISiA~ Bez Aud anal S GOIWId NTR 9g D0T3N GNIN 2 USMiVIR S*9TeT Gord
cv822 32N34343¥ ONud Stee NOLLYLS.

98 9NGT
Tuy
17 now
eerety 6a diva
@ 381M oBKNTYE Ay
---Page Break---
sere
zere
oe
Tree
ete
ore
vere
sore
sere
82
ou't

SoMa
e
a
aera
aet2 <a
ae"? sot
YeLIN SOKe
?
at xo709
698230 21N0s
ydSNveL

9 oolmaa any
ceveze
vera eet9 rst92

229 unt92
ere 70'8 2hr97
\#599 132
gern tre 85 " 92
ena $16^{\circ} 6$ aed
erro 469 zoree
es0 68"9 a
2e'3 a8'9 9
aera $18^{\circ} 9$ ad
eore 189 op'82,
strc iets pty tot92
$6 \mathrm{Br} 9 / 22^{\circ} 89$ sty uet92
? 6° S 18'9 G2" BT"92

StreG 95'9 aa» ogrc2

AYSe VOW VK 1 Ors
N394x0

68"

79Nv 3utH ese MLa3

E196 TTL aby gote2

SG itor ae'9 Soy B9'e?

98" Tot $88^{\circ} 9$ zo"» ayrcz

GOTT ca${ }^{\circ} 9$ Ry Lbtez

Lysk 479K 77H I ors
N39Ax0

166" ow
Bony WIN get HLa3

4\% ANOISH SAYH oz
6293810 SAyH 8
\#2 9N10 ONIM «8 ALINIBISIA a-G2 AHO dw3L
£2 30734 ONIN 20
30N3u3438 ONMe
eae
ese
paz
ast
eat
se
8s
2 es
carne e
Ba6"Gp 90rL2 er
966° SS SurLe a
SH1g30 GuvONNIS eee 82a
Gry SS4CT gare EovcT OT R62 OME

S199 Tyrer Teret et coz ace
$99^{\circ} 96$ 2c'6t 2er63 21 Tez as
sean $92^{\circ} 22$ o2tz2 2-22 $\operatorname{Tr} 9$ est
NIWS 3A¥L WL LNB BL BD
awa cy 830
OLOVs 733HM WIL3H GOT BIULL NIDAKO
OO KYH 9¥907 222z ?ind y'2 BWI, SS3K 2 ASYO
vtS:98 264y2 goro 26r¥2 oT 4s eat BLT
? $8^{\circ} 9989192$ go's 09192 eT 26 ue BS
Gee: Lo+c2 go'a cars? 292 S22
966s Se ${ }^{\circ} 42$ co'ez orc2 TE $98 g$
NIWS BAN, UWL TL we BL go Sum
3h (wy) Hida)
OLD¥4 T33HM BILZH HSO'T YILLL NI04x0
0 X¥H 1¥907 Sst und BT GHIL SS3K_T ASV
AKY 0079 9a GIKNH T3y 2 9x07
Beal on072 "8 1aK awd Wn
non
wanLyan Teter ova eu/ety se LV

DTeWhd NOLLYAS
ze $3 S I N \neq 0$ OBNNTWE Aw

7
---Page Break---
gate gat
203 g 2 t
WHLIN SOHa
ae $\times 0109$
eae 430 DINOS
wrasuya
> aolwad anew
zeveze
aera t6r9 pare 9)
ans 1659 GOry HErEz
pei2at : $6^{\circ} 9$ vate gvtez

SP'20T $46^{\circ} 9$ SB"\% pEtEZ

AYSK T/9K 77K LOIS

N39AKG
rrr

B09Ny Gate Or Le
§ LKOlaN AvH e
Ta 33810 3ayn 8
67 23st0 ONIN @
230134 Onin ze

3ON3H3438 ON4e
seerge 33702 er
eLese acrez 8

Shid30 GuvONNIS ?_zzy Gee
666'Ge TT+u2 ape Tr-cz 2 t et er et
6a'ge azt42 aztce aerc2 tT a 88
NTWS Sak ?RL UL NB BL 20 Sut
onan ow Hia30
OLOVS 133MM 33H $¥ 59^{\circ} \top$ HILT. NFDAXO
I xYH WOOT Pzay ?1nd HrEe BWIL SSIW T is¥D
AW¥ GNO72 49a GI4NH 738m 9" EE=998 9NOT
dk, $000790^{\circ} 3 k$ en3L ON Ltez-BT Lv
ALT atStA a-gz Ae ewdL prs now
NaMLvaM @-9teT NYE cu/TIY Ge YG

Yee¥ne NOLLVAS

828 3SInwa OUNTYE Ay

98
---Page Break---
$\& e$
e
es
pore anise zt
fe'> ovter e
sHig3¢ GuyaN SIr 2a
gee $66^{\circ} 52$ ot eer gor

- as as

622
ea
CHIN Sona ML Ne 20 31m
k3L uy Hi30
£66" MOLOV4 T33HH 99434 N39Ax0
© 310 IN gut H1a3G x¥R 1907 eeaz 1 8S3q T is¥o
Ho102 \& JHOT3H 3avm yy gno12 age W738 om ct Epe99e 9NOT
Stro aa0 3tn0s ta ?38u0 Baym ft gn873 @ 3M dw3k ON TERSAT L¥T
UYaSNvdi yd D4¥10 ONIN £ ALIMEISIA are2 40 ghd G8 now
S\$ QolH3d JAVA ya 073A ONIM 29 MBKLYIH S*gTaT UVa Ev/ety ge 31¥0

Sers2e 19N3N3 43H INNS @2-vus NOLLWAS

920 3SiNu3 OBKNIWE Aw
---Page Break---
griy Berg teyr9e zocer ear

168"98 g9r6T ese
ra9798 eae
zeu 96 ect
Tos98 eat
ree-9e 4
gee-ge as
TPe' 99 ?_aE
eter9s e
pau-9e et
966"Se @
SHid30 CovONVLS oe e2e

Teb-9e 26º T Go'e Ze'eT eT 1462 ene gue
? $65^{\circ} 99$ B9 3 T Bore goreT el coz age es
ve9'98 Terue gore Toc2 Zt eT2 22202
Go's 20-y gcge Specgs carte Gertz Go-c2 GIB eee Bey
vow VW LOTS NIWS FAL ML UNG LB) SHIH
N394xo we oy H1e30

166" HOLOVs 733KM $¥ 3 L 3 K$

HIM ave H.g30 xvm W907 aete

7 M3LEL N39Ax0
$g^{\circ} t$ Skt SS3H 2 AsvO

TwS'99 de'¥2 Bere Be's2 oT Tet oat eet
Gperse $22^{\circ} 92$ awa Bet9z eT 9S BS OS
ctwr9e $\mathrm{co}^{\circ} \mathrm{e} 2 \mathrm{Oa}$ Le'ce 21822 ge
Brae 966'se ¥BrL2 Her L2 vee tr eg 8 g
9K WK LOTS NITYS BAN, | Kd N@o 2120 elm
N3OAx0 dnb cy Hie30

66" NOLOVS 133HN W313H 968º T Y3LTL N3DAXO
2 Fwy wim ast Wig3C xm W207 saz ?LHD OT SKIL SSW tT is¥d
o 4 OI09 of IHDT3M an¥Y LY GNOT2 ?ee OTKNH 13H mH 9*Ee-908 9NOT e489 @80 JINOs pp 93817 3nve @ 3gai ONO] «BTA Lae add LIERSBT YT

BydSNvHL 62 D3HIC GNM L ALTTEBISIA 2-gz AHO gh3L oho non © ontwsd 3n¥N 7200734 ONIN Ze MBkLYIN ?TeT © GHYa «Su /ety Ge AYO

90992\% JONINTAIM ONHE D@-vae NOLLWLS 828 3S1nyD cgHNIVd A a

100
---Page Break---
---Page Break---
---Page Break---

Sauron ereze e
SHid30 GavONviS _ 99y 920
sagas go-et
easton $20 ¢ 8 \mathrm{~T} 62$ uvz ase

Faeroe Cotee ?et eet oz

6a8"99 38º22 ?etext ?est
605"99 sorsz 6866 Bet
a SoT +9 ¢ 62192 eS ae as
Seur9e c. 92 sz sz
snd-on o5rc2 ae

NEWS) SARL

N39AX0. cw) M1630
£66" OLD¥4 T33HH B3LIW HSE H2LTL N3DAXO
@ 340Ny SUIM aoe HLg30 XH TV907 etas ?ind Frys SKIL SIN T Is¥O
ar wo709 nH $738=998$ N07
pera 430 SINOS, im eka At Ly
~ BvaSNYEL
© O91N3d 3AYH 9g 90734 ONT owve = cesty ga BuvO
voyeze 30049249" ONNe De-vad NolaWss 820381049 OBKNIS Ay

103
---Page Break---
rete gure
m8 REZ
2's oe
nasa ere
YeLIN SoHo

6
a2. voteg
9209 03u 31N0s
~? evasNYeL
© antesg 3am
covazw
aera
vera

6219 o8'e eprez
$8^{\circ} 9 \mathrm{BU} " \mathrm{~b}$ bere?
verter <o" 9 gate artez
Sy'TOT pe'9 GL» verge
LYSK Von WW LOTS

NB9Ax0.

466" MOLDVs T33HN BILSH

Flow WIN at nla

5
a
a
a
iMgi24 aarH
D3u10 Gaye 8
D3e10 auiy g
2073A auim ze

30N3H343H ONme
geese curee

680'99 Bt-2z,

Beorse fe+02 gare
susan O5e42 eTh22 Brtc2 TT

NITe
er
e
SW4e30 GavONris a
eerce at st at
a @
GAL aE oe BL 20
nad On AL
pS0h USL1L N394KO

OO x¥y 7¥O07 GeTT ?Ko grgT SKIL SS3n

Any ang39
34ai on973
ALDinargin

HSHL YH

Veevnd NOLLVAS

92a oLWnh 138
ae Lae awa
$8^{\circ} 62$ AUC GWIL
Suter CHve
\# 9¢tc-994
N gtez-er
Beer

Se/Tty 6a
oy 920
or
2

Buln
430

Taso

Ye 9NO7
an
unk

822 3S10¥9 oBKATNd Ay

108
---Page Break---

Teyeze 30N3¥3134 ONwe
---Page Break---
---Page Break---
---Page Break---
yeiin SOMe
ar yo709
este 430 I1N0S
_ ~ ayasNvaL
© goly3e 3nvs
?yz epston vise eer
?itp 22782 Se
9euroe 99'92 e6
PIB9 $66^{\circ} 92$ es
Lo2'98 GBo2z_a
Souroe cutee ar
sao" $9 \mathrm{~s} 60^{\circ} 42$ e
SHid30 GuVONVIS ez ze
gpraut $46^{\circ} e^{\circ}$ so'cz ot 96 et Bet
TeTaT a6 Wr Be 8s
GL: 20t ve" az se 2
sor2nt 96 g eo 8 @
LYSK V/9K WK LOTS NTT FL 29 Balm
N39Axo. Oy H1a30

66" MOL2¥4 T33HM 33H pSO"T Y3LIL N3OAXO
FUONY BBIN Dt Hig30 KWH TOOT eZRT ?1A C22 3HIL SIH T LS¥D
© NoraM GAYH c_4H¥ ano79 orane 73 e ? N 07
ze 93810 3AvN 8 3e41 ano1D 136 g83L an
6) 3 ST OWI TO AITTIBISIA Ore ABT dw9L nok

89 073A ONIN W3MivIn G'esor ONY fu/Tty Ga 31¥0

2uye20 3ON3H743E ONME @6-vid NOLAWAS ze 381049 oBknayd Aw

108
---Page Break---
© ezct» 962 e6z eae
@ screT \$ cr2 oez esz
@ srraz 2 he ost goz
@ 6trs2 tT get eet act
2 29+¢2 9t aT got cot
_ ? @ Byis2 cr 4s ae as

Te'92 ga'e te92 2t ye 2 ge
area var : atece atede tr2 tt a 8B
YELIN SOHe Lyx 479K 1/9K NIWS BAY ?RL 51 NS 2120 Sut

N394x0 awa (4) Higa

66" wOLDV4 T33HM_¥IL3N ySErT YILLL NI9KKO
S Bow 38IN gue HLg3C KYW WOOT Lea ?Lhd $9^{\circ} 2 \mathrm{~T} 3 \mathrm{HIL}$ SS3M TF LSVD
a ¥O10] ¢ IHOI3H 3AY¥ Tt LAY GNOT2 ZB GTKNH 7344 S*ee-998 ONOT
270430 DINOS ia 93470 3AYH 3dal anor] ee Lak gwSL ot. StTE-BT LT
? - ?BVaSRVEL ~ 93-?T3ATO ONT ALITIBISTA AUD gaat ret nO
\% Gotead 3n¥* 2220738 ONIN Ze M3MLVIN BTOTeT ? CUYE ?Su/TT Ge GLY.

2ove2e 3ON3E343u NKE DG-vHe NOLLWLS 920 3S1n¥D OBKNIVE Aw

108
---Page Break---
os-vaa

On-vna
st OZ
?930 3unLyYadHaL
a st az
\$3084. HdBBOONNIHLAHLUA
---Page Break---
Toe voty votez gusrst zorsz et
20'e 067\% G82 Gor'ce T5'Se e

- ? SHLgIO-DUVONYIS? ~ Tes ene

TOL T6"y p9tez GeStce Zs'Gz Gere zorczz 6 Bt OT
$28^{\circ} \mathrm{C}$ a6'y OG G2 garrse T5162 e
YULIN SOME AYSK VOW T/T LOTS NEWS SAV. KL ONG BL 2D uN
N3DAxO awa cy 1430

466" MOLOVE T33HM WILK GOT YILTL N3DKX0
@ Bony 3YIM OF HLg3C XYR 9¥907 OTE ?LKD CoT KIL BSI T Is¥O

ANOT3M 3AYH -\& HY Ong)
wor0a

Yee aia DTNOS
vasnvu.

4 GoTwad 3AVK 073A GNIM

Teoees 3ONINIIIN ONUE VFevWe NOLLYAS

719
12 arce 13 K awaL
uve = va/bey ta 3LVC
fee 3StnuD osNnTvE Ay
---Page Break---
ates were 96 e
ote:

298"
ar9"
908

286
su6

SHid30 GavONYIs ?_ze9 ena
ee es
Bese Sh ce 8s
zersz2 2 be se \&
aug" se greet 2288

NTS 3AM KL TL NEBL 2 BIN
dnb w1a30
£66" OLOV4 T33KM BIL3N 99O'T WILTL N3DAKO
@2 FTONY BUIM GOT HLg30 KYM WDD OyGt ?und BGT ZKIL SSI T LS¥D

- wo] LHOIZH 3AM of LaY GnO1D @z@_GtANH Tay N07
bere dd0 DINOS ?ge O3uTO-3AVK G 344L GNOTD «g'zz 13K HII a7 wrasnvas D3u1d GNIM ALITGISIA AMO awl get nox

4 Gol¥ad SAY 68 9073A ONIN
zs

UBHLvaM Grater Ouva aevoz7 te Suva
@ FONIN343N INue @t-vkd NOTLVAS 888 3SINYD oBNNTVE Ay
---Page Break---
eeree vite g9'92
atty go'92
vty a8'92
vety BL'G2
$6 e 6$ oc's2
gory Letc2 sz
$26 y$ 09'cz es
B6'y ot'y2 ee
26" y 60'sz ez
26 Lo"s7 et
Soy cose 2
SHid30 OMVONYIS e890 Geo
a etty g9'9z cev'oe LO'LT Bato CoLT » gaz <2 aE
a Shee 26'S Etty Z6'92 SENT 9E Stet \& eee 9¥2 OGz
a 26'S yt'y S3'92 206+98 asez 29 Let BAe
a 22:9 serv aL'sz eco'ee 2:22 tT tet Get ast
a G22 Trt6 siz zeetse Barsz oT 888 BUT
a $\$ 2$ 26'y ae's2 Bsarcs ?c'92 at oy as BS
a $22^{\circ} \mathrm{C}$ B6"y Lo"92 Bczt9F gprs? 2 G2 62 G2
WO" 6\%» L9"S2 GcEtGe fyc2 tt ao 9B
veLtn vWF LOIS NTS. ub N@ 2420 Bele
N394x0 3k Oy Hie30
66° woLovs 133 HN B3L3K Oye ${ }^{\circ}$ T YILTL N3DAXO
Ot STONY TWIN ave HLa30 KYK TV2OT Eees ?LHD Gr8z SAIL SS3H T LSvD
wOl102 sy AHOI3H 3AYH 2 AY GnoT2 zz GINNH 13H BT ¥e=998 9NOT
Gye 430 DINOS gg 93uIC BAYH 8 Gadi GNOID "7k 13M GH3L oN BTZE-eT YT wydSNYEL? g@ D3uLO ONIN < ALTTBGISIA ABC awl 902 enon \& Goldad 3AVH Tt DOTHAN GNIM 2@ ?H3MLVIH G*BTOT ORV «bu /e/ Te 3L¥O
fe9ece 30N9Y3I3u ONes

Ot-vad NOLLWAS

82 3S1MD OAAIE Aw

129
---Page Break---
byerse t5's2 or
ag0'se To+cz e
SH1d30 GuvONNIS ots ate
kv'gs 26" Grerse TS'G2 8's Totg2 2 at et aT
a'L6 g8'9 92" zeerse To'S2 ge'D Te-c2 tt @ oe

AYSK VOW VW L918 NIWWS GAY KL LONE BL 89 GUTH
N394xo dn3h cy ued)

12252 ce
Oe abe wares

466" HOLDVS T33HM UILIW CPO" YILTL NIDAXO
@ 379NY FEIN OF HLd3C KYW WOOT hE LWO CeET SHA SS3H T Ls¥D
vor0a AHOT3M 3AYH 9 Lav on079
eae 430 DINOS 79
UyaSNVuL
? GolWae aAvH
© OINMH 138 eteee99e 9NOT
213M gw. NL62-BT YT
@ Aw gW3L areT non
90734 ONIN f20T OWYE pu/O2/ te SuVO
veoece 3ONTHI43y ONYE YeeVHd NOTLVLS £8 3SInYD CBHNTYd Ay

130
---Page Break---

TGr9ox thie ets zetez eeLise gar
29'Z0T 2 T'C $^{\prime} 6^{\prime}$ 'y BB'C2 ERE Ge se
96'9 es
69 er
969 ee
16:9 at
669 a
SH1d30 ONVONNIS 9 Bee
tore orte 99'S BO'2 9y'Gz gt 25 eat Bot
96:9 cote 9:62 gare a9'cz at be eg as
s6'9 sere Gr's2 ov'e sy'cz zt Gz sz gz
$65^{\circ} 9$ Gath S668 cy's2 00 Lerce TY ook
VOW VW NIWyS GAL Wi ML NG BL 2 dat
N494x0 dna ny a3

466" wOL2V4 133MM H9L3N pyO*T HILTL NIDAKO
@ B1owv Sun @at M1430 KYW 9V907 BzET ?LHD EBT BHIL SIH T isvO

40102 of LHDIIN SAH © AY GNO19 889 GTKNH 73H HK Bt EE-998 9NOT zete 30 DINOS 92 234IG 3nVR 8 dai an079 2 2M aW3L ON StTEAOT LyT uydSNvuL ?g@ D3NI0 ONIN ¢ALTTIaIStA EO aw3L rer nox

9 Golwad 3AYH TT 2073A ONIN 28 MBKLV3H G*@zeT OMY tLVBzv Te Gu¥O yy9ese 30N5U3234 ONne 82-vag NOLLYAS @e2 38InYo OBNIE Aw

131
---Page Break---
stiee
aprec
gore
2606
vers
$2 e^{\circ} 9$
anes
m9
s2teot 2:
scot ts'e
TEeT vate
a2'eot 96'9
zt ettee
arse
a9r28
seveeeetc'9
49566 49"9
g9tcot Te'e
$65165 £ 6^{\circ} 9$
ezect eo +9

AYSK 9K
sere
$20^{\circ} 9$
ag
gy
some
sty
aety
zety
sory
ao'y
arg
g2t6
a6»

92"6
a
very
WK

NB9AxG
@ ony gure
wooo $¢$ iHoray
yete 30 DINOS c9 O3¥TC
wydSNvaL Dautd

9 cotMae 3avH 20734
a
Sy9eee 30N3¥343u ONNE
arioz
22192
te'sz
etree
vetez
sere
tetee
oute2
pctee
sete?
te'e2
ayoz

L292
rad
sare
yeree
terez
scree
ated
iors
tot wi
aan

3aTN

Nim

Nim
aa

Z
a
?
20
gystoe 06ter
ac'9¢ oer6t
$266^{\circ} 98 £ 2452$
gectog Tot8z
5"se 02452
$99^{\circ} 66$ verge
Bacge 22782
204" 66 vy?

B69'6e errs
oy's2
6r's2
SH1d30 OBVONYIS goo ota
9yS'98 96º LT BO'D 96'LT » 2 Bae Bue
acc'9p 6E'6T Gate BETES eB Bee Use
6695 \$2112 Be'g F212 2 @ Bde Boz
ed'9¢ Od" g's Gee tT @ act ast
Gls'G8 O2'62 0ºD Oz" $<z$ Ot 46 GaT BET
GaL'6¢ L2"62 fod L2"G2 OT @ as as
LeLsp ays2 Gree av 2 sz?
$69^{\circ} 60$ 6y'G2 Ooo Byrcz Tr @ of
NEWS 3AYL HL TL NB 2k 20 Bed
3a ony 130
OLOV4 33HH B3L3H CharT UILTL N39AXO
JO XYH W007 S gt ?LWO T:az WIL SSI T Ls¥D
4WY GnO79 gaz GIWNH 734 © -m 9teR=998 DNOT
dhl ONO19 $8^{\circ} 82$ 19K wWIL ON COTR-eT L¥T
ALTMUBISIA $\mathrm{O}^{\circ} 4 \mathrm{eO}$ awaL Tree now
WaKLV3M G*eTBT ORY pu/8z/ ta $3 . \neq 0$

22d NOTLYLS. Be 381NYD OBHNIYS Ay

132
---Page Break---
£ 26t\%
9 90"

BLeish ooisz
Zye'se vytsz
eri tet \&\%
62566
sHig30 GUyONYIS te ete
gate 35 " gtrtot sore ze'y were acdgp bytez Syisz oF ot et at
$8^{\circ} 260$ " 61466 s6º 9 9Rty BL*C2 ZwL $¥ y T E z$ veraz at 288

YULIN SOMd ASK /9H V/TH 1 OLS NIWS Sava RL ON BL do Qu
Na9Ax0 wa cy Hue30

66" MOLQv4 T33HM_BBLIN pPOrT BIULL NIDAKO
@ 31ONY FEIN OF HLgIO KYM $1 ¥ 907$ BGK ?Lhd O'HT BHI SSaR T AS¥D

WOI10] \& AHOIZH AAR 9 AY GN012 Ee GINNH 73Y MH L*ze=998 9NOT zea 430 21N0s ?Q3N10 SAY 83441 CNOTD a*ez 13K gk3L oN -G*E2NAT 17
wy dSNVUL. D3u10 ONIN 9 ALIVIGISIA @'A Aud aw3L ET ngs © Golwad 3AYM 98 073A ONIN 28 M3MLVIN EzaT ?OMYE ?ru/Bzy Te GiVO ?298e9 | 30N3N3430 ONwG Yeevag NOLLYLS 8 3S1N¥9 OBHNTVE Aw 133
---Page Break---
996"5¢ 99\%G2
erg
ar
2 vse

SHid30 CuyONrAs
c9'9 38'y gorse gorez oF
?e9 bete asrsz 89:62 at zy
$96^{\circ} 9$ co'y 2562 ze'ce zt 62
eat Sere gery cree ceesas paces
SOMe AvSX T/9H S/W LOTS NTIS SANE
NBoAxo
ayo ese
eer gat
as as
2
a
29 un

Wy 4830)

466" wOLOVs T33H4 BFL3H fyasT USLTL N39KKO @ STONY BBIN Bet HLa3d KYW VDOT Ores ?AMD BrLT BAIL SS3W T AsvD
wol09 f AH913K 3nYM 2 any ano wete 30 DINOS ?Be O34TC 3AYH @ 34A1 ONOTD UyaSNveL gg -D9NIC ONIK ¢ ALITNeISIA

O1AMH 134 9tze=998 ONO
LK dW3L NW ORERT LWT
AeO an3L arct
ynow
a
9 Gotdid 3AVH Ft D073A GNIM 29 © MSHLVIN g-TzeTUVE «buvezy te JuvO
Zv9ecg 30N3W343¥ ONwe @e-vad NotLWLS Bee ASIN oBWNIYE Ay

134
---Page Break---
aytoz
stt92
sercz
es' $9 z$ ot $¥ 98$
ey'sz 929'98
g3'92 98898
ge'62 T2099
f6'h2 BTR
ei82 ase'se
cie2 eal se
fete co ?e722 a9d'se
YULIN SoMa 2918 NTs
466* yolov4 $133 \mathrm{K"} ¥ 313 \mathrm{H}$
@ Fon aWIM gee H1430 XW
O10], AHDI3M 3AYH oF _Aky GnOTd
zara 430 DINOS \$8 93¥EG 3AYM @ ual GNOTD
vaSNvaL gg -D9NT0 ONIN Z ALI TIEISIA
9 Qolu3d 3AYH TT 073A ONIM Ze uamLVaM

Syoeee 30N3N3434 ONNE

Dgevad NOLLWLS

otter

SHid30 OBVONYIS
ae'e sttet 96
gee vores ve
were 2 ttaz 26 t
eeve at
$a 0^{\circ} 8$ Tet
as
62
@
SAV a
a
s*2zer

OIWnH T3u

Castlarrs ry

ANC awl g+8t
ouva
wy
syert 3111 N3DAKO
W907 Bayt ?4nd cret 3WIL SSH

M Cizes99@ OK
N ctte-eT
veseey ta
Be 3S1nD CBHNIVE Aw
s99 sto

2sz

202
act
ent
as

SZ
@
3atm
kig3a

Tasva
non

3uvo

135
---Page Break---
set
ot"
YeLIN Soka
woroa
eae 430 DINOS

Urasnves
© Colusa 3ave
egteot
otter
agtaat
attat
ASK
a6'8
0's

26'9
sere
9K
sory
oer
zty
WK

NJOAx0
stony 3u1m
©
ee
62
ve

AMOI H
93810
Daata
073A
pers
veer
vere:
oan:
11
466°
ar
anvn
$3 a m$
ants
ant
oegeeo 30NIN3434 ONMd

Mia!

6

9
ze

2 z28'se anise ar
2 OLe'9e fH e
SHid30 GuvONNIS 989 ete
2 eee'se er's2 ao'a Gyrgz 2 tt oT Bt
2 Oce'9e SerSZ aoa yg2 TE © 8 B

S NIWS SAL ML UL NB BL 29 3eIn
dna cay 1638
MOLOVE T33HM U3L3H Geet Y3LIL N39AX0
30 XYH WOOT 9TBT LHD EtwT BL SEEK T LS¥O
AWy Qn012 gee GInNH T3Y MH 9" TE=998 9NOT
Beal On079 avez 13K gHIL oN Stez-BT AT
ALIMeISih $9^{\circ} 84 \mathrm{HO}$ gw3L tot 0 H
MSHiVaM G*ezeT ONY su/ézy te $1 \neq C$

VoevWd NOILYLS
@e0 3SIN¥o OaKNTVE Ay

136
---Page Break---
B19 sety corer
re:9 96:82
oer9 tersz
26'9 futez
£69 tevez
$96^{\circ} 9$

969
are geree
9a: tere2

269
9679
zeree
" Tarcz
WoW VW L ots
N394x0
we?
VaLIN OMG
zee9e
soa'90
sta-98
suerse
peers

ToB'se
ease
reo98
st0-98
O98" oe
?e860
NEWS
corse
e9ee
69752
29'62
ard
$9^{\circ} 82$
39'62
ugsz
6982
a9"s2
T9662
eer
\ll

Bs
es
ez
at
@

SHid30 GuyONv1S aes oF
Gero Lstsz gt tL 66
@e'o 49'62 BT es as
gore agrcz 2t cz 52
geo t9:c2 tr ee

3
Who UNG BL 20 Sutn
Waa (oy) 830)

466" OLDYS TY3HM U3L3H SPOT WILTL N3DAXO
@ FMoNy 3BIN Bot H1e30 xVH
wo10]-¢ AHDlaM GAYM £ _Aky gnolg.
z0Te 230 DINOS ge D3UIG 3AM @ ead Ono?
BvdGNveL ga -93uIG GNIM 9 ALITUBISIA

9 colwad 3AVK Tt 20730 GNIM 26 w3KLVaK
veges 32N3u343¥ ONME
@pevad NOTLYLS

207 2tzt ?ind $2^{\circ} 9 y$ BWIL SSH T ISVO
892 OLWNH 134 Ztte=998 ONO
e aK gW3L N - $¥ t o$ ReeT LY?
AEC ge3L 2c 9 now
zat OUVE bu /8z/ te Biv
@e0 3SIn¥o oaKnTE Ay
---Page Break---
ar'92 cest9e aareT Th
£8192 Lad?oe @2'6T ez
98's2 2z6'9R s5't2 eae
iT'62 99ctog corte est
6 6erez easese cctG2 eot
2ere2 e9e'se $¥ 9{ }^{\prime} 52$ se
64182 pae'se $5^{\circ} 62$ es
Terese zaerse Sorce es
terez zae'se 25'<2 22
tere2 zaerse Se"c2 et
ee's2 2e0'se a5+se e
Shid30 OuyONYs
fy'9z 296'98 caret gute catet y 112462
ge192 cactor gzt6t Beret ¢ \$82 oce
98:52 2c6ron S5tt2 s'32 208 ane
LT'G2 gecton e952 fyez t @ ast
6182 aesrce Scie? eis 9 @ das
2:02 vae-se 15162 isre2 at 9 ag
Te'e2 2aarce $26^{\circ}<2$ 2erez 25 ae st
GretoT co"4 £6" BUr2z zaR'se 5º62 6:52 tr a8
nyse WoW VW 191s NTS AML at NB 2L 20
N394x0 ay
66" wOLDVS T33HM BILH PyATT YSLTL N3DAx0
2 SNONV 3BIN @OE HLg30 KYH T¥DO7 cat ?ind 69T 3KIL SS3H
yol02 «> AHDI3H 3nvR THY Gn019 ged GIKNH 13H BF te-99\%
96f@ 430 DINOS D3ulO BAVA 8 3dAI GHOTD G"92 13N GHA ON Et 2E-aT ydSNVEL 9@-99BI0 ONIN L ALITIGISIA 8@ AMO GH3L St9T

9 Gold3d Save TT D073N GNIM 28 u3hLVIK GrzzaT OMY BLvBRy te

T9982 3ONINI43Y ONNE

Ovavad NOLL

99080
ous
asz
eee
est
get
as
<2
@
Buln
30

T asvo

2 2N07
an
nn
uve

28 3SINND OBKNTWE Ae

138
---Page Break---
rete vi vocige terse
SB'y perc? p2eSe Gyraz
gate et ceraet $20^{\circ} \mathrm{C}$ Téy ve'cz vaLiGe Tetsz
aa'e 60" 2/'66 £6'9 GBiy vErE? HZu'Ge Br-cz

VBLIN SOME L¥Sk 79K T/7K LOTS NITYS BAN
N39Ax0
er
e

SHLe30 DeVONYIS Bo eee
aero twis2 ot gt et
aero aerc2 at tO

Wi NE BL 29
nah ee
(66° YOLI¥S 193HH 343K pert H3LIL N3OAXC
6 FTONY TWIN BS HLG30 KVR $1 ¥ 007$ EFOT ?AND ovwT BALL SS3K Tt 1S¥D
wor02¢ INOI3M BAYH 2 wy ono7D
e200 430 DINOS eg 38TG SAH 8 3d OnO79
avaSNVL G2 93410 ONIN «9 ALI Tiers
esvece $30 N 3 ¥ 343 ¥$ ONMe Ye-vhid NOLLWLS

9 Oolaథ SAY © 9@ 3OT3A GNIM 28 M3MLWaH OS"

6 OIHNH 138 Stae=998 9NOT
52 Lae dw3L oN StezeeT 1vT
8 AuC an3k oT now
ezetoMve tu /82/ to $31 ¥ 0$

820 381nud OAKNTVE Aw

139
---Page Break---
to $66^{\circ} 9$ gee'9e Lotez eer

?6 98'9 eso'on 99'ez

to aa'9 deuron 19762
te 2699 tp9az
te sero agree
to S619 a9+s2
?a sero re Ed
SHid30 GuvONYIS geo eee
26180T 66'9 Gay Lorez Eee OR LstS2 BetD Lerse oT 1S 66 But arr yo'82 cserse 19"S2 Bo'o L9"G2 at or 0s as
42) stiaot co'9 98"» zerez Gperce O9-s2 aoe eorc2 2t a G2 G2

Bar eTegat G69 gAty Te"c2 Tee-ge as'S2 aoe eorce Tr a be
NSOHG AYSK T/9W VW LOIS NEWS GANL HL LNG SL BD Sure
N394x0 awa Oy HLe36)
466" HOLDVS T33HM HIL3W PHOT BILTL NIDAKC
@ STONY BUI BBT HLg30 xVM TV90T BGBT ?4n9 B'S BHI, SS3K Tt ISvO
yor09 AHOI3M 3AWN Tiny Gno1d Bec? OtKnH 134 9taea998 ONT
28T@ 430 DINOS 23810 3AVK 8341 GNOTD B"9z 13H GHIL «ON OTAESAY LY?
UydSNvHL a4 D3BIG ONIN 9 ALTUBISIA @2 Aud gndL Ot oT now
§ Gotuad 3AVK c@ 2073 GNIN 22 H3HLV3HGtzezet uve «eu /eey ta SLO

Be9eee 39N3N3I3u ONNE

86-Yad NoTLVLS
ee $381 \mathrm{~N} ¥ 9$ oAKnIVS

140
---Page Break---

982
6552
asrz
vetaot 45162
?9 gate settot soarse acre
?3 6a'2 9o'tat Toast $65^{\circ} 62$

SHid30 OUVONYIS ~ oto eee
get zetye sevt9e covey tote § \$82 eaz gee
set vetee aag'9n 96495 Bere © Bee Ore 362
a: sotae 2a6'9e Lotte UeTz 2 26\% 263 Boz
ot tras zecton R618 2 pst ast
ut act6s. QT3+99 autsz Bcre2 9s BR ROT
at: getter $26^{\circ} 6865^{\prime} 62$ sere2 oF ty Gy Os

6a" yttgot Bu8'Se 65'S? ieis2 2b 2 ve Se
ac 9a'tat

2 roe'ch és'52
VULIN SOKe LYSK,

NTs 3AVL
serc2 1\} 988
NG 2220 Gutn
(ny i 430

Na9Ax0
£66" wOLdV4 T33HN _U3L3K ovOrT U3LIL N3DAXO
GT ITONY IWIN COE ?HLd30 KYK TVDOT ZeTt tLWD GrsT 3WIL SSIW T AS¥D
wor) AHOI3N anvH AWY 0NO79 G92 GINNH 138 9taR=998 9NOT
e680 430 DINOS 9 DFUIO FAVH @ 3eAL GNOTD "92 13M awIL NP TEMOT IVT

WyaSNVEL 83 -O9BIT ONIN ALIMIGISIA $8^{\circ} @$ AWG @H3L 9ST unk

9 Goldad 3AVK 9 DOT3A GNIH 28 USHLVIK G'220T ONY = /BZ/ te GAVE

6s90ee 30NZU343u ONME DGe¥hid NOTLVAS ge 3SIND OBKNTE Aw
---Page Break---

Deva
nWka

3e-Wka 3e-via
fuse ?ez Ken
eno-va ?on s8ynay
oT Va

37930 aunivaTaWaL
az se az
3088. Hav¥SCHUSHA AMLYE

SZ
az

142
---Page Break---
$+g t$
1 ee
WaLiN SoMa

49709
eau 430 91n95
evasnvas
> dolysd 3avn
vouep

T6146 6919 goty eg'e2 zevige Gstvz 96'92 9stoz zB Bt AF 1665219 Sut GstE2 Scg'sr f4'92 es'g2 Cgtgz T oT oT 8

AVS WOH W/1K LOTS ATS AVL KLUB 2D BTN N3EAx0. an CES

466" woLDVs 193MM w3u3K 949" HALIL N3DAKO Stow FeIN as mLa3C AVH WUT Bee TLKD Off SHIL SS3K TF 4syo.

YanS13H gave «2 wy GnO12 eB Oth 73am LtyRHog 9NOT at 4sf0 Gav dal Gn019 OM 3k dada ON BhAEWRT YT at 33 u10 Uuiw $\$$ ALTTialgin atez Aed awd C'S. wow

9 D079N GNI 24 MSMLYIM DYRBDT Duy wL/2z/¢?BLYG

3ON3M3474 Od votyag NOLAYAS asiNwo oBKntvs Aw

143
---Page Break---
YuLIN Some
?

49109

22a 430 DtNos
avdSNVML,
" Gotu3d aay
sour

9 ety ontce ceatge
y SFie2 dees Gorez gorez setcz \& tet 6s aot
2098.

22592 © as as Bs
zavioz 2 Gt G2 ge
?92 ay'oz oy'92 tT og ft
a
AYSE WOH VAN L918 NEWS dard WL at? Ne B. Tay Sut

N39
dna (ay Hue30

466" yOlovs T33HM w349H aco" $¥ a L t L$ NaDAXO

379NV 3ulH aot

TLH9taH aay
69 93u1G 3Avm
@t 93utG Onin
£8 90734 GNIM

3ON3UI43¥ ONE

Mid3G xv WOOT 2 @ '4Wo ate FWLL S\$3k ft asva
2 tay ono79

OtwnH 78 Zteeeg? 9NOT
y Bask On019 © $8^{\circ} \mathrm{g}$ Lam awk oN SttEeas ayy
4 AMT, Otte Aud ah3, tg unde
zo Iw? Ouve = pe /eere Gav
arene NotAvas 3siMwo oBHNIVE Ay

144
---Page Break---
tet
ost
ve!
vt

93

4a)

VuLIN SOKd
?
40709
ete 430 21Nos
dydSNved,
> Golu3d 3nvn

99esh
estye yater 682
?vite genet oe
zetee $29 \% 6 t$ eat
946
bye @

44tez 26
greg @
ast9z a

Vow VW A STS NETS AYE a
N39Axo ?
£66 wOLavs 735KH 343K cet YaLIL N39.

BIONY BUIM Gof M4g30 xVM 1907 42a ?LHD wT SKIL S:
© ANOI3K 3AVH 2 _dnV on072 26a OLWOM T3u
6@ 93410 3AVH > BdAL GOT «tg L3H an3L
Bt D3uf0 ONIN < ALITIGISIA tye AYO aH3L
a D013 ONIM 20 W3KAVN ThaTeE | OuvewL/ei

30N3¥3438 Onue OFeVRa NOLLYLS asinea

Wy \#1230

Axo

S3k Tt ASvD

N07
a7
now
$2 / 6 \mathrm{vO}$
oennive Aw

145
---Page Break---
---Page Break---
---Page Break---
asz
?a82

- 2at

7
? \$6.
ae

2
er
e
SHie30 CuVONYIS 4s ove
Beret » 162662 gue
grat © GHz bbz BGz
?erst 2 6b gaz Bez
6ort2 Test get ast
be'y2 oT @ oat aot
W6"Sz Bt es es as
yg oe
Err £066 yo'9 acy certe cebres Bete Soe sear go
YELIN SOM@ avsx Vow T/tW 191 S NIWS aAWL RL a) we Sy Suu
N39Ax0 da (ay Heese

466" MOL2VS T33KM U3L3H QL" Y3LTL N3BAXO
(BURTON 3UIN gee HLd30 xYA 4VO07 seo ?Ke g*2t SKIL Seam T isd
yO09 2 LHOISW anYM Tay gno79.
S7@ 430 Din0S g¢ 93uTG 3AM @ Sen) Gno7?
~ SVASNYEL~@t~ DUTT ONIN ~ ¢? AITTEBTRTA
\% Oo1¥3s BAYH ge 073A GNIM 20 uSHLY3M

49g OWN 73u
ous
vereey 6 a 310
OScf0d 30N3H343H ONES 8-vhe NOLLYLS. fe@ 3SIN¥O oBKNE Ay

148
---Page Break---
---Page Break---
---Page Break---
---Page Break---

Dawa

SA98U1 HobMOCWESHAAHLbE
---Page Break---
ust ?te 2990300
os0-va ?on osfnay

Deva oe-vaa orWad

1d
a
st az
2 "930 3uniuaagH3L

Se ae st we se az
\$3088 HebUSOHUIHLAHIBO
---Page Break---
---Page Break---
Gort cat
e6ie a!
To arteiat

TO'vs 2649 Gate tetyz
$9619612: 9$ ot» tote2
? I9tast Tete wL*y Tetee
QS! Gbrtet 69 ya'y 2at2e

170
aw
~ VeLIN SoHE "uYSN TvowAZTH OTS 22 3utn
N39axo 4K) 41830
?_?? ea tomy sare ppGOO BOLOVE 334K UIE3K? BIZ wITTE-WaEAKe?? ~?
_- © STONY SUM AEE H4g3d xVA 1990799 ?nD TeaT SKIL Seon Asya
Sonos fq \{MQU3M AYR 8 aw cn079 agg OtWOH 134m Bt¥t-99 onOT
9eta-a30 Jtwos ?Ze a3utG 3Aym $8^{\circ} 81$ am dnd, wot TEaT ?u¥t
uvesnved, 33ula GNin $8^{\circ} 62$ Abo gu3L?T+at non
SOT wae ane ??? TOTFA-OT S9ver ONVE ?Fu7tevar ?s1¥e ?

Bonswsale onag

BreyKe NOtAVES

?¥81Nwo OBHMIVE Ay
---Page Break---
\#20798 Setst $¥ 6$ t gee gue
ese ecz
Bez Doz
est act
e
20 3am
wy Hie30

N3DAXO
~ £86" BOLDVS 133M BIW ?RTE UIE -WIOAKO
MIO BUIN aut muedu KYA HOOT Eta stad got KIL 8834 T 1svo
40109 \$ANo1aN 3AYR 9 any on079
ze@va 430 2INOS 99 93H m8 agit ano7a
uvasnveL 6a D3) ALTMersia
-oord3e 3Ave \$3. 30T3N ONIN 2B uSatyam

OLWNH 73y* etye=99 9NOT
A3hoda3L oN BttRORT LyT
AYO dn3i ty now
at ONY WL/TE/ET GLYCO
fees 39 NgHI 438 oNUe ore $¥ d$ NotuvAS 38towo o@Nnrve Aw
---Page Break---
26;T0T 2679 cary ooze cezrce gerez er
986 SOO GL*y S222 BONER 2c Ce

SHid30 GBVONVIS 92\% ace
arg gee EE.3T £6:9 S879 $\mathrm{y} 9^{\circ} \mathrm{z}$ 2 cease gerzz gore oeezz $>\mathrm{tt}$ ot er

Feit Sma ?P18, \$852 \$e59 G2222 wosree 2eece aoe seceg TF 8
YULIN SOME ? A¥SK 779K WK 1 Ofs NTIS) ?SARS ON® BL an ew NBDAxO 0H) Hie30

666" BOLOVS T33HM B343H BTL! UaLTL NZDAXO
2 Nowy autN et M4g30 xvA TyD0T GG And BET MIN eeee asvo

KONOD 4 :HOlaK 3AYH Z _Lay onoaa OtHOh 738 a*ee-998 onor QINOS a ?9340 GAYN «8 34,1 gnowd Lie awl oy. sonra $\$ 2$ 28ulO Guim Alrtueisin arge Ako Suan NAS.

430mm 269073 GNM eo waHASM G*ZteT Oe SSTey ay ava
®26260 30Nlu343u oNuG Ye-vid NOLLWAS 8 38InyD oaNnave Ay
---Page Break---

SHid30 CUYONYIS 6s eg
ra ger22 wer eoy aay
9892 \& 9 S as
se 8 a
eo tt @ 68
Tb NG 21 a SutH
1430

173
verte
1x Son 473k Toke
Nagaxo Wah
@ F70N 3UIN gat MLg30 XWH TVD gyzz ?iM OZ BHI SSIN T As¥D

0109 AHOIIH SAYM 9 _LWY QNOT2 gg OINNH 738m T*ye=998 9NOT
e9te 430 DINOS ?23410 SANK 1079 13M gw3L | N-S*BRSeT ?LY avaaNvaL 3u10 ONIN \$142 ABO GHIL az non
© aoluad 3AvK 20734 GNIM VIM L'2TaT ONY ge/Tos Tr Suv

686060 30N3N3434 NuE @z-vid NOLLWAS @c8 3SInyD oeNnte Ay
---Page Break---
treet

T9892
e292
$29^{\circ} 02$
aerce
\$arOz
cared
orr6r
porte
go'82
sere
$20^{\circ} 02$
Te0c2

3a

289" re
Nts:
eer
ase
eae
est
eet
$\$ \mathrm{e}$
as
es
az
at
@

SHid30 OUVORVIS ?ag6 age
ae: 8862 e62 oop
ee'o < ez
eeo 9 ust
ea Sot
\% oT
$£$ ts
z 06
toe
N@oz
$\mathrm{OH})$ Hiead
foe" BOLE T33HM BILZH BTL! wOLTL N30AK0

S 3TOWY BUIN nk HLa3O xvH WOT ElZe «ima 2-2 LAMM SAD 3 aso

50098, 427K ave 9 wy conor sca tare Tay B'2e-998 9n07
obra se QINOS ge ?23ui0 3avn gaan Gaeta gfe OND gWaL ON Steet iT ev dSNTeL 23 u10 ONIm ¢ ALT THBIgiA 2 AW BW3L 202 on

S coiuad 30 H ye 2073 ONIN 22 uamivan goSSar Owe beter tr $3 i \neq a$
@6ese 32NI¥343u oNMe Deevad NOLLYLS.

250 3SIN¥D oaKnrWe Ay

178
---Page Break---
T6t96 39'9 ety gotzz
$96^{\circ} 6620^{\circ} \mathrm{C} 26$ " Ga't2

+ T6'96 t9'9 coy Bstz2
PT T5* $96{ }^{\circ} 66$ 20'L 26" 90'T2
YHLIN SONS L¥ミx Vow T/W 1 OTS
NB9Axo

66"
© 30Ny aulN Bt HLaRt
$0709 ?$

9509430 DINOS $\$$ @ 93NTO JAYM og avdSNveL ga D310 ONT
» Golwad 3AYH 2920730 GNIn 20

626069 39N3u3434 ONuE

AHOIIH 3avH
vatise core er
£6620 voece e
SHid30 CAVONYIS 626 aga
verse 0642 Bare esrez 28 oat at
$46^{\circ} 28$ r9'42 @a'2 yercz tT 9 ogg

NIWS GATL WL UL NEBL zo Sut
dk3L On Hiead

OLd¥4 193HN W3L3H ATL SLL NIDAXO
OKYH AWOUT 2 t 6 'LKO Z-ET BWiL SS3N Tt is¥O

KY CNOTD 988 OIKNH 13x Btze=998 ONO?
das ON079 9° 13M GW9L ON Stez-Br L¥T
MIMBISIA grфz $4 ¥ 0$ an3l geet enon
waKAWaN C'USaT Owe bu/tey at Gu¥O.
Ye-YHd NOTLWLS es@ aSinys oawnre Ae

175
---Page Break---
ear
Se

SHid30 GBvENVIS 986 age
re9 96 Bere sree» tet oor eat
at 96 Ooo 9662s By as Be
gore seruzz 2 gz ge
iee-20 ere t2uzt @ 93
NEWS GAM kat ne Bn ag Sate
nae On 41830)

466" HOLDS 133HM BIL9W BTL! BaLIL NZDAKO
\% ONY FutM get mLg3d xVH 49209 Laz ?umd Gㅇ $@$ JWLL Soon T sye

Siuoe \$5 (RSI 34Ye any gn0r2 298 atninn 738° » e * zeeage $9 n 07$
sete 430 21N0S 99 O3ulG Saye 8 aah Onoia ere ?Tan ease toe-et iva Bye 82 93K1O Wim \& ALtTuBistA avez wo gual Sefe non
\% goltad 3avk 9890734 Ohm 29 uHuvaH Geter OuYa ave, tr TOT

986e6o 39N3¥143y ONMe AR-vie NOTLVIS 858 3SIn¥9 oBWnrVE Ay

176
---Page Break---
lee 22 t9
zaree g2'9
Lee 22"9
?to agty
baS6 F6t9
To'r6 86's

SHid30 GayONLS

ae ta
ee pert
os $25^{\circ} 6 t$
ae asrt2
s cer82
£8 bore
bute are
vey rstc2
94: sez
" yore
26% S2 ${ }^{\circ} 22$ Lg we SutLe
oety arrer
arte
ote 296
2228 Gc'62 Lec+9p $26^{\circ} 52$
Vik L918 NITYS) aaNL

N394x0

468" wOLD¥s $19344 ¥ 313 \mathrm{H}$
e BUI 90s Hig:
sgt att 6'9 say aztcz
otto eat 8's oc'y 9etez
gee ga" GL'9 22's 2t¢82
sete set $\mathrm{SO}^{\circ} \mathrm{C} 26^{\prime}$ » Getz
YeLIN Soxe 9K HL OTS

N39Axo

2 sony gen
$¥ 0100$ ¢ LHolaH
aeee 230 DINOS §@ 3ul0
uyaSNveL ga O3uTG

Goluaa 3AY\# a 2073h

OXY VDOT LEtE ?Lhd $\mathrm{O}^{\circ} \top$
st
ve s)
Nis

262
ave
vst
oot
2
zoe
eee
eae
agt
rat
se

96
or
22
er
8
use ose
eee oor
esz ase
edz 202
eat act
29 Jat
uy 1630
@Te+ ¥3L1L N3DKx0

BHIL SS3N 2 ASYD

2182 go" L282 » got gat oat

192 ao'2 aer92 eas as as
e142 BO LUZ 2B Gz G2
oe scat 988

BAY, kL LN BL 29 du
en3h (4) Hid30
ABC U3iTL N3D4K0

466" wO.dv4 73344 9313K
eet mig30 xYH $¥ 9$
BAYH § _Lwy ong72
BAYH 3441 Ono79
ONIN 4 ALTTEBIgiA
ONIN 290 w3KAyan

2e-vae NOT

486060 39N3N3434 ONNe
ur gete +
tee a
saz
ercter
as

AnD pT 3Wi1 883M Tt is $¥ \mathrm{~F}$

THM 128M 6*Ze-990 9NOT
ABM dW3L ON B*TE=OT $1 \neq T$

ROO awd CT
now
owve pastor tr 3uv0
60 3SIn¥d oBKnTWs Ay

7
---Page Break---
sere
269

BL $¥$ estze
v8'y U9'Te
£89 oc'y est2z
$26^{\circ} 9$ v $8^{\prime} y 19^{\prime \prime}$ tz

S/W 7H 191 S
NJ94x0

VELIN SOMs

66"
@ 359Ny gure mas

40100 iMOlaN SAYN \&
tee 430 DINOS Ge O3utG SAY 8
BVaSNVHL 6 -D38I0 ONIN
\% corwad 3avH 2820738 GNiN 20

26269 39N3¥343u ONMe
a
actise 69 rcz et
$2088869^{\circ} 42$ a

SHid30 GUVONYIS aes age
Bet'ch Gercz goo Betz» 6 ot at
zigree $69^{\circ} 42$ ao'e egrcz ee oT Bg
NEWS GAT WL ONL NS ok 2a Sate
dna w) H4d30
OLOvS 733HM YBN ATC? LIL NIDAKO
0 xWH WOOT 286 ? 1 nd ¢'ET BWI SS3W T usva $^{\prime}$
AkY gNO72 98¢ GIHNH 13Y M ette+99@ ONO?
3da1 On079 8s 13K gw3L oN Brezser u¥T
ALIMBISIA $8^{\circ} 92$ AHO KIL 5*ET unow
WIHLV3M L*?TBT ONY pe/TEY eT Si¥o

Voevkd NOTLWLS 68 3SInuo oBKNTVG Aw

78
---Page Break---
ahicz cterog s2tez
Qetrz assr9n 99162
9uts2 ape on 15192
80'22 eedise 69912
$28^{\circ} 22$ popes 6 ct 42
$\$ 9122$ eze'se aatce
Grr2z aces $20^{\circ} 42$
SKid30 OuYONYIS te oce
3162 eter9e Gzrkz ee'e Gztez » eet Bat gET
26'9 28'r 94182 eeEt9R Lery2 Bo'a Letoz fF fs eG BS
e919 L9"y \$6122 GagrSh GL'L2 Bato GL-L2 28 Gz gz
$26^{\circ} 9$ vO"y Ov'zz arene 2e'L2 BB zeU2 tT @ 8 3B
Von VW LOIS NIWS SAVE HL LON ZL zo UTM
NB9Ax0 ana (ay 430
466" wOI¥4 733HM B3L3K @TL+ H3LTL NBDAXO
9 STONY IWIN aay M130 KYW ?WOOT Szaz ?1KD pre HLL SS3H T LSvO
40100 § AHOL3H JAYR ANY ONOT72 Sea GINNH T3Y om Lt TEe99@ ONO
e43e 430 INOS «Ge ONTO ZAVM «8 dks GnO1D «Bt LIN GKIL «ON OteESeT VT
WYdSNVEL 48 D310 ONIN -¢ ALIMIGISIA @ф2 AMC GRIL tre, nH
y Qoiead BAVA 98 D0T3A ONIN 20 MEMAVIM «C*CTET © OUYE = bu/Tas tr 3LYG

S86060 3ONINI43¥ One
avevie NOLLNS
so asinu> ceHnive Aw

179
---Page Break---

SHig30 GUYONYIS? £6 aథe
seet9e ered @ 62662 gee
ots 98 Eros $\mathbb{4}$ eek bez sz
669'98 Soret 9 96T 64r Bar
96 c '98 t't2 c tet ost est
456198 8trez y 68 BAT Bet
vit9e oraz s 89 as as
reese sce 28 ge ge
S6"7 $97^{\circ} 22$ ors-ng seuzt a 28
YUAIN SOMA LYSE W/9K 37TH 1 -9IS NITWS, ATL ONG FL zo Bere
66° woLovs 133 HM B3L3H BTL* wILTL N3DAKO y ROMY FEIN ue HiLg3C XYH VD0 get ?1nd O'S? 3HIL SS3m Tt is¥D

O10) 1NOI2M GAY 9 uy ONOTD 648 OLKNK TgY mH *Te-998 9NOT
zara @30 DtN0\$ ze 33u10 Saye ©«@ 3441 Ond7D A3M awl oN O*TeeeT ?LyT BVASNYEL Ga O3¥IG ONIN 4 ALITIBISIA B'gz2 Add andl otse non
\% Goldad 3AvH G8 90738 ONIM «20 M3HL¥3M G'7TeT Suva be/¥Ey Br Suva

86262 30N3 $¥ 3434$ ONue Oy-vnd NOLLWLS @60 3SInuo oBKNIVE Ay

180
---Page Break---
S8's6 Bey 9L"y aGt22 ostist 99rLz ar 40'o s2'eat co's So'y agtez Ece've 94'L2 e

SHig30 CuVONVIS: ~?tks-oge

Bat ee'66 Bory 9c'h BEtZ2 getrch 9orLz BOT GerLZZ 8 BY BT
so ${ }^{\circ}$ yt 26 ' 9 By OL'Z2 Cee ye $94^{\circ} 42$ Bete GZ T BB

SoHd ?AVS VK T/7W 1 DIS NITWS GAYL KL UON@ BL) 80M N39Ax0 ana M430

466" wOLDVs T9RKH BSL3H OTL) UBLTL N3DAXD @ STONY BYIM GT Mid3C XY 1 YD07 $¥ G G$?UND GET BWIL SEH T LSVO
wO109«@ LHOTaM AVM 9 _LkY nO OINMH T3¥ A Ctae990 9NOT NOS. Jam § 3d4L on079 AON gW3L ON EtBzeT YT V8 D3ul0 ONIM =< ALT L@IgIA z AwC aw3s get xnow \% aolddd 3AVK © f@ D073A ONIN Ze WIMAVIM «C*ZTET OWE «pu /Te/ Bt uO Te6eeo 3ON3¥34IU DNuE Yeavne NOLLWAS 68 3SInyD oBWNTWE Aw
---Page Break---
gota gtrze
a
8
si
?
8
a
ze
62"66
ots
ero ec'y
\{9'@0t 96º LO"y
tee"
£66 2219 acy
$62^{\circ} 66$ £ $8 " 9$ Gc'y
$a ¥$ Sx 779K 177K

NJoaxo

9 37ony 3eIN gat

40109 AHOI3M 3ayM
zete 30 D1nos Ga a3ut0 3Azm
wydSNaL (a 93410 ONIN
\% Goldad 3AVK GB D073A NTH
eg60ca 30N3¥3434 ONNE

Secon sorez ear
2eL'9p L2"62 5
Toeto g6t9z es
aE
ee
a
e
286 as
Bet gat
Bs as
62 se
eo @
20 Juin
nat On) Hida
youovs
HLg30 x¥H 207 Zzet

Ta3HM B3L3W OTL" ¥3LTL NIDAXO
£ any onor9 OLKNH 12¥ _m \$*ae=998 9NOT
@ 3441 an079 LM aw3L ?N-StaEaT ?1v7
\& AT iergin @ AWC BHI, 922 union
Ze waHLvaN Tet NYE FL/TEY at Bu¥O

Us-vne NOTLVS O50 3SINND oaKNTWe Ay

182
---Page Break---
zener
685
9276
e802
cortor 2622
eo: tor sere
zertet pa
grog aad
tee sztes
ata 92 '6t
gore artz
2266 L282
aertor Tyee
strzet vere
zertor pare

YULIN SOKM LYSx 30h

NBOAXG

si

26
es
ez
@
ans Ue

SHLd30 GuyaNvis
veret
sez 662 ae
ss2 sez sz
set 62 G02
ast oct ost
Ber edt Bat
3 s 9 g as
@ 62 ge
tT a 28 @

TENG BL 0 atm
cw Hie30
£66* MOLOVS 733HM W3L3K OTL U3LTL N3DAKO

2 YoNy 3eIN aoe HLg30 xYN W907 \&
wO102 AHOI3N BATH -<_LnY ano1d ai
s688 430 DINOS Ge O3TO 3AM «8 ear cnoTD ?B
yasNvaL O3u10 ONIN ALTT)
¥ Gol¥ad 3AYK go D073A GNIN 28 WSHLV3K

8260¢e 30N5N3434 ONHE DGevAd NOLLWES

4b ?ano t82 3WIL SS3W Tt LSvD

8 O1KNH 734M S*@e-998 NOT
GLa awaL wv TEET IVT
\$2 AO gNaL T+82 snOH
gtet Wve ee/Tey Ot GuvO
a5e 381nyd BNNs Ay

183
---Page Break---
---Page Break---

NJOOuLIN 8
saovuaAY TIVE ~WRd

185
---Page Break---
orety
SGhte
AB0AxG

2 Wsunra-vie

rats 6pat vty
Sages Peace ewan d
@ WSUNIM-vRa
aeate oper
arate stots
N390NLIN GONE N3DAKO
$¥$ MSANTM-vita

2enicz ee
aesiee ?i
\$98te2
zectee 4

996 \%ce 5
myBts2 ok
poates we
Tete Cyatee
oes ates |
WS Genuvesans ia30

4
Gunuvesesa, 41a30
aevaey HONOMML sezzze wud Vivo aOveaKY
Tie teres gpatgz t
e9'ez ?gsa'se geetee,
TERNS OATTAITWS 3unIWe3e31 G1a30
PE9us NO PyML eeerET NOE VaNS aneNaAY
---Page Break---
9 onTuas-vaa
pscuee Hennes

SIE Fe

```
28
ets BUN Yedda H4g3o
```

SMHS AMIN Ts
GSixre HONOMHL pc¥ez? YO VAVG 30YR3A¥
---Page Break---
sya'e
fse'ae snovge foes

SE Zoma Waa ? Twas ? AEN vs ?sunivasansy- Waa

2 waHNOS=VHE
ay
?aHNNS -VHE
ate bysty
se tet,

Sons Na9aKU
$\neq u s W N n S=V R E$
a20Sb0 HONOWH EEsZeB-YON VivO JOYUaAY

ALiniis~ 3untvedanay A4aa0
~ R2OSp mOMOUHE peSzED NOS EVO JOVUTKY

STAGES WOCHMT (2628\% wos VIVO -SOVEZAY
---Page Break---
© Tavi-vad? 2eSaso-noTOMNIseoESe
---Page Break---
190
---Page Break---
APPENDIX 4.14

Data Reduction Program-12 Mar. '75
TAB

191
---Page Break---

REALes ST, STE

DUVENSEOM TACLE (954 40530) 4 1T(25) 6ST C150) /DATAOIIS) smATAS(LAY

Le TETLE CA, ty, TTT C49)

188 FUMAT CUBS OR ARE GEN GED, SO SEEM cod Oke ASS TDD

AOL FOMATCL5 xy an, t55
362 Foamarcieas)
MOS FORMATO'TN 7K, TaRLE HI
$18 x$, " ate "arated
404 ?FoRNATC\#\#", 123, 42612.3)
105 FOUMATCI>N I>3,3 "FLoray
486 FORMATO 12a, Les er4)
37 FOMATC*2", 16,\$x,46,>\%65F48,3, 118)
AOR FORMATO HAE, 15F Hy OD
189 FORMATC!1", L645)
DATA DATAN, TASLE/9థtae2,/
DATA COTITLECL J) sT84,8) ,J84447) 7
ANTOTAL lowass? OF pOORLANKTON (ML/\$@aH3)
2ITOTAL NUMRER OF Z00PLANKTON PER inane

SITOTAL NUMBER OF SoPEPOS BED qaaMs ENTOTAL Munck? OF CHAETOGNATHS ER 4BaH3

STTOTAL NWuewER OF LeRvaceaus Pea segms SITOTAL NUMGEP OF CLACOCERANS PER 1sgms 7ITOTAL NUMER OF PTEEQPODS PER dade. HITOTAL NUMWER OF OTHER PER Louns SYTOTAL \# OF VELICER LARVAE PFA i4ens PITOTAL \# OF CIRRIPFOE NAUPLIT PER ivoMs ANTOTAL \# OF CIPRIFEDE CYPRIS PER 1vams BITOTAL \# OF PEAEID LARVAE PER isem3 GHTOTAL \# OF PRACHYURAN LaaVAE PER 1DOn3 DITOTAL MuMaen OF OTHER BER anos.

EVTOTAL NUNAES OF FISH EGGS PeR 199g
FATOTAL NUMRER OF FISH LARVAE PER icons
GPTOTAL NUHSER OF HOLOPLANKTON PER 3BOK3
OATA CCTITLECT J) 124)8),J942)349/
ANTOTAL NUMBER OF MEROPLANKTON PER LOOH3
2tPrAcevTage oe CopEPnOS
SIPERCENTAGE OF CHAETCGNATHS.
4IPERCENTAGE oF LARVACEANS
B'PERCENTAGE OF CLapocesans
G'PERCENTAGE OF PTEROPODS
HW SPERCENTAGE OF OTHER.
ZIPERCENTAGE OF VELIGFR LARVAE
TPERCENTAGE oF CIRRIPEDE NAUPLIT
SIPERCENTAGE OF CIARIPEDE CyPAIS

AIPERCENTAGE OF PENAEID LARVAE
BYPERCENTAGE OF BRACHYURAN LARVAE
G'PERCENTAGE OF OTHER

PERCENTAGE nF FISw EGGS

PERCENTAGE OF FISW LAaVAE
FSPERCENTAGE OF HOLOPLaNKTON
G'PERCENTAGE OF MEROPLANKTON,
c READ TITLF,
2 READ (2ese2erho=98) THTe

849//20\%, 1885/7/52K,

STATIOSS*////

---Page Break---
2

32

33

34

0

PRINT 449, TITL
Trinees
than
IstAT ve,
TAVLE ?Chae deaedy
READ FLAS? cash,
ReaO 2295 11(12 ST CL) DILUTsPIR2, REVSPH REVS, MET, AS) IREP
0992 184, 42720
PRINT 4274 1TCITINE) »STCISTATH) :DILUT, PIR2, REVSPM, REVS, uET,

BEPIRZOHEVS/REVSPH/AID,
Dieurantvyry ay ike
TABLE CITINF) 1STATN 4A) STABLE (ITIMEs ISTATN, 4) ¢¥ET/2
09 \$2 Jet, 1keP
READ 491, To, DATAG
PRINT 168, TOW,DATAD
$0028 \mathrm{~K}=2446$
OATANGK)=O4 TANCK) \#DATAD (Kod)
comTInuE.
CONTINUE
SUM HOLMPL ANATON,
D9 22 K22,7
DAYAN(L7) SNA TANCK) sDATANCL7)
CONTINUE
SUM MEROPL ALKTON,
D9 25 Kea,49)
DATAN(18) SDATAN GK) ¢OATANGLED
CONTINUE .
TATCECITINE s ISTATN, 6) STABLE CITIME ISTATN) \$6) \#4TA(2\}
Do \$2 Ke19,\$4
TALE CITIMEs ISTATNAKDETABLE CI TIMES ISTATN,K) *DATAN(K=26),
CONTINUE
Do st $\mathrm{K}=2,18$
TASLE CITING ISTATNG KD ETABLE CITIME» ISTATN,K) SOATAN(K)@DILOZ
DATANGKISE,
CONTINUE

CHECK FOR END OF \& DATA SET,
IF (AS.£0,1He) Go 7099.
REAO 408, 1TCITIME*S) sSTNEW,OILUT

Ree

TR2)REVSPM REVS, WET, AS, IREP

TECLTCHTIME*S) NEGITCITIMED) ETIMESITIMESd
Do 33 IstaTNea,1s -
IF (STNEM.EQ.STCISTATNY? GO TO 34
CONTI UE
NEW STATION,
Iselser

ISTATNAIS|

ST(IS)\#STNEW
TABLE CITIMEs ISTATN, SE)eTABLECITIME, ISTATN) 38) 04, continue

PRINT TITLES.
0982 171,48
PRINT 383) Lo (TITLEC Os Ey eJedeR) oTIlbs (ST CK) SK EL) ES)
082 Jet, tTIME
0095 kas

193
---Page Break---

55
an

Cr

98

82
ae

DIVIDE aY auntER AF TORR,
TE CTABLE (JK, \$5) 429474) GO Th 5D
Take (SMe E) STATLE CURT) /TARLEC SK 399
ConTINUE

IF UL.cT.a9 co To at
PRINT 404) 1T(00 (TABLE (Je Ku 1) 0K:
Go 10 a2
PRINT 495,)T(J) 0 (TABLE JoKs Dy
conti yue
Do 84 119,34
PRINT A235 fo (TITLECle 1) 008d 08D TIT Ls (STOK) 9 KELVIS)
0084 Jaa, ITIME
Do 67 Kety 18

CONVERT To PERCENTAGES,
TP UTABLEC I,K, 34) £5404) GO TA 68
+18)
118)

TABLE (Jiky 1) 2TAGLEC Ks 12/TABLE(J) Ks 360 0400, CONTINUE

PRINT 106, 1T(J) CTABLECJ/Ky1) /K2L0 1S)
CONTINUE

O92 181,36
09 9a Jetsitime
0999 katy 18
TAGLECJoKsT) 20.
CONTINUE
ao tat

CALL EXIT

End

194
---Page Break---
APPENDIX 4.24
Major zooplankton groups at each station
and for each sampling date.

Explanatory notes for computer printouts.
PTEROPODS: non-coiled species (e.
STPHONOPHORES:
THALTACEA:

8-5 Creseis acicula)
Siphonophore bracts, not whole animals
includes salps and doliolids

195
---Page Break---
ZOOPLANKTON MAvATI

BIOMASS 1 ?1/108 CUBIC METERS

ABLNDANCE IN \#/CUBIC METER

station 1 statioy 2 station 3
C2 tows 3 ToWS) ce TOUS)
Browtass 1618°
toTAL 96a 16351206
coPerons 5751209785
cHaETOGvaTHS 345136
LARVACERYS 72426
erenovons 3620°
ostaacops 3046138
cLapocenays =o 12
MEDUSAE 2313
SIPHONOPHORES 716
crevopHonEs 9°
THALIACEA 222
AUWELID LARVAE 11 ae 1
CIARIPEDE LAR @ a 5
ECHINODERE LAR 103 ?
ECTOPROCT LAR 1 a a
BIVALVE LARVAE $1 \circ \circ$
SASTROPOD VEL 5S a1 a3
FORAMINIFERA 123
MALACOSTRAGANS 2223 2s

SISH LARVAE @ ${ }^{\circ} 3$

FISH EGGS ae aa aa
10.

May 1ar7a

OFFSHORE
©2 Tows>
10

487
$2 a e$

16

39
---Page Break---
aroma ol Mates er
BIAS BE uri pees iste

ABUIDAICE 1 \#vcusic TETER

stating 1 statiay 2 remnat 3

Ort cams: C1 tt
Browacs 619 ? 13
roTAL asin 198688 18¢
oPsroas rere an 19s 463
ainetociaTHs se 0 te
manmacsias 227
Prenopons 31 © 2
ostnacans 3 a 2°
Gapcsnais e ? e
?epusaE s 112

StPHONO>NORES 8 an v 5
crewruonze e © e
THaLtacea 2117
AINELID LARVAE 864 e
erasrsoe Lar 931 e
BOHIVODETI LAR Ie 133
EoTOPmcT Lan @ 122
SIUALIE LARIAE 15242
castors ve. ee ae \%
FORAITHIFSRA 15277
?ALAGOSTRAGAIS 29 ey 1s 3
FISH Lamar 822 e
Fis Ecos ts 86 1e 165
---Page Break---

200PLANKTDE PuITa 4araTL a1 9c
bloMAss 14 aLviee cute

```
statias 3
```

ere er Be :
siowass 22113
ror er 364 asve 861
corerace 1008 ren asie st
a ae 93 2a
Lanvac > sc 243
Prenopons 7 ? ${ }^{\circ} 2$
vemaciss 72 s ?
GaDoceeals 152
teousas 2° s. 6
?rpvo~o7Es $21^{\circ} 2$
stevens @ e ${ }^{\circ}$ e
maracta ${ }^{\circ} \mathrm{e}^{\circ}$
ANVELID LamAE 15 a 204
crnREpese Lan 2?. 6
SoMIVO: Tt Lat s e «
ScTDPROCT Lar 42152
?SIVALVE LAQAE @ 4 s 2
sasrao=5 7S. 18 ta aa a
PoRAMVEFSRA @ 25 e
aLacostoacats $18^{\circ} 2 \mathrm{a}$.
SISK Latuar $2 \circ \circ \circ$

FISH Ecos 64 a2 a7 18
---Page Break---
ZOOPLAYKTON

Mavart

BIOWASS IN ML/ 189 CUBIC ETERS
ABUNDAUCE IV NUNSERS/CUBIC METER

Browass
qoTAL
corerons
ouazToGvaTHS
LaRvacEANs
-FTEROPODS-?
ostracons
LADOCERAYS
wepusae
SEPHONOPHORES
crEvoPHoRES
?TMALLACEA
AIVELID LARVAE
CURRIPEDE LAR

ECHINODER! LAR
ECTOPROCT LAR
BIVALVE LARVAE
GASTROPOD VEL
FORAMINIFERA
MIALACOSTRACANS
FISH LARVAE
FlsH Ecos

MEAL

1695
1209
st

24
20

48

23
aa

VARIAYCE

5

194650

12701

388
set
a

258

10

197
15
358
14
aan

MAY 1/74
station 2
3 REPLICATES

195 Cele

12 To 24
ae To 2731

272 To 2187

270
e710
470
8
e
a

870
e70
er
$e \%$

100
$6 s$

36

86
?
?
mn
an
16
12
70
18

9a
---Page Break---
zo0PLAITD1

Browacs Eh sie? ov
ABINDAICE IY 1UEBERS/CHr

Browass
rota.
copepons
crastocraTa=
LanvACEAYS
PTEROPODS
ostracons
Lavocenais
MEDUSAE
stPHoVoPHonES
CTEVOPHORES
THALIACEA

CURRIPEDE Lan

ECHINODER! Lan
SCTOPROCT LaR
BIVALVE LARVAE
GastroPop ve.
FORAMIVIFERA
1ALACOSTRACASS
15H LARVAE,
ene
ems
ens
am 3
ens
e 1088

116

291056
ina
---Page Break---
DOPLALTOS PUITA iAnaTt 24 act

Boiacs 1) wurise cvste aetens

ABUIDRICE TY VUISENs/cUSIC ?METER

Had
stones 3 en.
ora. 1564 2ieas
coPerons ten ise76
ae 29 sr

86 tat sam

43 ens
osteacops 23 ems
avocenass 13 ans
MEDUSAE ${ }^{\circ}$ an
stpnovoprones $1 \times$ ems
cTEvoPHORES ${ }^{\circ}$ e on
THaLtacca ${ }^{\circ}$ ate
AUVELID LARVAE 422 e710 16
CIRRIPEDE Lan a 22 eto 15
EOMINODER! Lan 512 \#10 14
SCTOPROCT Lan 212 aru
BIVALVE LARVAE 42 ems
sastnoPoD ve. 1438 eo 70 a2
FORAtINIFERA 219 etn
MALACD STRacAWS ${ }^{\circ} 67$ @ 7029
FISH LARVAE e e a0
FISH Ecos se sis 2610135

201
---Page Break---
---Page Break---
APPENDIX 4,28

Copepod species at each station
and for each sampling date.

Explanatory notes for computer printouts-
T. TURBINATA: ra turbinate
T. STYLIFERA: stylifera

SM CALANOIDS: Includes Paracalanus acuteatus

Crausoeataul Faveacus
Mecynocera cls pnocera eTaust
Kerocalaniz sp.
and other juvenile
?calanoids
---Page Break---
4.28
coperons sanery
ABUIDRICE IN «/CUBIC METER

STATION 1 statioN 2

C2 > © 3 ToUs
TeTURBIVATA 137675
TSTLIFERA 38
St caLavorns 197208
caLavorra' 5
ACARTIA ${ }^{\circ} 6$
nuercutra 1 s

FARRAULA, 1s n
conycneus 3846 .
cETHOWA 1048
owcaza 1819

204
station a
© 2 TVs)
ais

。

279
n

1

MAY 14/74

OFFSHORE
© 2 TONS)

198
---Page Break---
coPerops
ABUNDAICE IN
?Te TURBIIATA
TeSTWLIFERA
St caLavorDs
ewvoca.avys
cALAVORtA
ACARTIA
wiprswa
UCHAETA
EUCAL ANUS
FARRAUULA
convcaeus
ortHowa
oucaca
eycuate 4ETER
station 1

C1 tow

20
13
692
5

2

45

19
16
6
130
ae
sectart
station 2
© 3 Tous)
a
2
260

2

10
58
16
statioy 3
C1 tw
s7
18

18 ausust 774

OFFSHORE
©(1Toy>

323

13
---Page Break---
oPEPops savatt 31 ocTOBER /74

ABUIDAYCE IN \#/CUBIC METER

STATION 1 STATION 2 STATION 9.??OFFsHORE
Citow> 3 tows) Ctr © Ca TOW
TeTunsiwata 173225 sia st
TesTLirenA 2 ae 5 e
St CALAVOIDS 589766290 32a
NawocALauUs $23^{\circ} 6$
camorta 6 e 202
acantta ${ }^{\circ} 132$ a
Lucrcurta $133 \mathrm{e}^{\circ}$
BuCALAUS 92e?
FARRATULA 1s 24 a9 2s
conrcatus 2938 a 37
ormiowa 17169186 te
oucaca ee 162926
---Page Break---
?operons Mavart May taza
sowrDAIcE 1 wUNSERS/cUBIC 4ETER ?Shepuicares
next vantaice 498 cate
Trussivata ors serees © 701562
nermirena . ? or 13
st catavoros 20813013770 an
caLavorta s 2 ime
scantta 6s 7287210278
uereurta 52 ime
Fansatua " 18 Lm a
conveatus as 1988 t0 198
onriowa ee 787141 ise
eveara 182 om se

207
---Page Break--coperons mavatt

ABLIDAICE IY MIMBERS/CUBIC METER
seav
?Te TURBIVATA a7
TeSTYLIFERA 2
9 cALAVOIDS 260
NawOCALAIUS 3
caLnnorta 2
ACARTIA ae
worwua 2
puciaeta ${ }^{\circ}$
Buca aus ${ }^{\circ}$
FARRAVLA ey
convcazus te
ormiowa 36

Oncaea 16

VARIANCE
12
2

1573

23
34
18
135
ta

15 august 774
statio? 2

?2 REPLICATES

198 cote
2810 as
ems

16110358
em?
ems

147043
em 20

297086
61025
---Page Break---
coPePons MavaTE 31 ocTaSE7 774
statioy 2

ABUIDAICE IN NUVBERS/CUBIC METER 3 REPLICATES
aeay VARIANCE +95 Gere
T.TuRBL¥ata 22529079270959
T.STYLIFERA 123681027

St caLAvorDs 766 sea9 5321999
NawocaLavus 39 emu

CaLAvoPrA . ${ }^{\circ}$ ene
ACARTIA 13133 © 10 a2
Lucrcuria 3° et
BUCALAVUS 23 em.
FARRAYULA 2a 3891040
conycasus 38329746
ortHowa 16912991910296
oucaza 18108 @ 104 4a
---Page Break---
APPENDIX 4.94\%
Benthic Stations at Punta Manati

STATION 4 east of Manati River (Pt, Manati)
2 January 1973
Depth: 7-208
Investigator: S. Martin
STATION 2 Location: Pe. Manati (East of Manat! River)

Date: 6 June 197\%, 1\% August 197\%
Depth: ae
Investigator: P.M, Yoshioka
STATION 3 Location: Pt, Manati (East of Manati River)
Date: 6 June 197\%
Depth: ae
Investigator: P.M. Yoshioka
?TRANSECT A east of Manati River, parallel to
shore
24 May 1975
15-209
P.M, Yoshioka
?TRANSECT 8 Location: Pe, Manati (Bast of Manat River)
31" May. 1973
jo- 179
Investigator: V. Vicente
TRANSECT C Location: offshore of Manati River moxth
Date: 29 Mar, 1378
Deptt 20m
Investigator: P.M, Yoshioka
TRANSECT D Location: wost of Manati River (Palmas Altas)
Date: 11 May 1973
Deptt 0-179

Investigator: V, Vicente
?Refer to Figure $¥$.3-Fi.

210
---Page Break---
APPENDIX. 4.34 (continued)

STATION \& Location:
Date:

Dep:

Investigator:

STATION 5 Location:
Date:

Depth:

Investigator:
a Tecation

Date

Investigator:
an

Inshore of Seation 2
AW August 197
ae
P.M, Yoshioka,
west of Manati River (1/2 mile W)
31 January. 1973
$7=20 .(15 \mathrm{~m})$
8. vartin

Rocky area east of the Manati River
mouth

30 January 1973, 14 June 1973,

21 February 197\%, 9 Apria 1978

D, Martin
---Page Break---

APPENDIX 4.38 Macro invertebrates and fish observed ?at Punta Manat!.

STATION STATION

23
?ANIMAL, KINGDOM

Phylum Porifera

Anthosigmelia varians
?Caiigepengla vaginas
?Sinashine caverns
Trefna strobitina
jularfa magca
?Sphaeclospongia vesparia
ae:

Phylum Chidarta
(Class Hydrozoa
ites so * x

Subclass Zoantharia
saricia 9p
ifocetala stoke
Biploria sp.

Phylum Chordata
?Subphylum Vertebrata
?clase Pisce
Fanily Holocentridae

Holocentrus, sp. x x

Family Serranidae
Cophatopholia fulva $\mathrm{x} \times$
Family Carangidae

Caranx erysos x

212
---Page Break---
APPENDIX 4.38 (continued)
statton starrox
22
Prylun Chordata (continued)
Fanity botjenidae
coyunus chrysunas x
amity Sotaentéae
Eyuetue sp. x
Fanihy wuitidae

Paudupeneus maculatus x
Fantly Chastodontidne
Setseantias Snlestar X
Fantly Ponacontridae
Fonacentrus partitus xx
Family tabridae
Sotianss ruts x
asses biFosctatum x x
Fantly Acanthuridae
scanthurss op. xx
Fanily Sconbridae
Sconberonorus sp. x

213
---Page Break---
sepyuoteg
?seprep Tudo
seppo059 7409
seprmawerado
?seproosouseuny

TaeUOTeS BOPRIOG

epsuseang
?suoyawis uostod esoysavou 3e paroet \{os seszede ueTA 96H KIGNIGEY
---Page Break---
adyae BRAOUOTT IST
saroas
epyBunaey
upqtolody
ouprunsaes
oepraaeututs
sepraauscoro
seprupaosy
---Page Break---
aepave woporset

Ss
oeprrTeH
?sepruseyos: g
sep Keepruog
orppaseo
---Page Break---
---Page Break---
sepranqauroy
---Page Break---
APPENDIX 43D Infaunal and epifaunal speci
in $1 / 4 n$? eanpl

STATION

4

Phylum Annelida
CLASS Polychaeta
Family Aphroiditidae

Eunice rubra

Sabeliidae (family) 2
sytlidae (Faniiy)
Unid, polychaet © 1
Sylile? prolifera

Phylum Sipunculida
Sipuncuria ep. \#2 2
StBnSuLla op. \#7 5
Tae stpmneniota

Phylum Mollusca

CLASS Gastropoda

Vermicutaria knorné

STS ct
?Syaathan poser
?Hissstie maT Ticostata

Trivia ate

CLASS Pelecypoda

Anadare notabiLis
rea imbricata ?
?Diplodonta qucteifornis
Faeete ease
teeta ,

219

3

8

StattON

1
---Page Break---
APPENDIX 4.30 (continued)
STATION

Phylum Arthopoda
CLASS Crustacea
SUBCLASS Malacostraca,

Order Tsopoda
Alfctrona hineuta
?Cirelana obtrunest
order Amphipoda
Unid. gamaria 2
order Decapoda

Suborder Natantia

Section Caridea

Unid. caridea 1
Synaipheus minvs

Suborder Reptanita
Section Srachyura

Zplattus ditavatus 1
?Fortune sp- 1

Section Anomura

Pachycheles ackleianus
Phylum Bryozoa
Unia. Bryozoa ath at
Phylum Echinodermata
CLASS Echinoidea
Bucidaris tribuloides 24
Welifta sextesperforata
CLASS Asteroidea
Asterina folius 1
CLASS Ophiurosa
?Amphturidae (famity) 2
ophiactie milter
Ophfocoma echinata
Slots eary 1

Ophfonerefe aquasulocs

220

STATION

1
---Page Break---
APPENDIX 4.90 (continued)
statron sTartow
31
A 8
Phylum Chordata
Subphylum Urochordat
CLASS Ascidea
Unia. ascidian x

* 2 species
** 3 unid. bryozoan:
3 different epecies

221
---Page Break---
APPENDIX 4.4A Common plant species Let for the Punta Manat area,

Grasses, Vines, Herbs:
?Bidens pilosa
Burgerea siarab

Chrysobatanus ep.

Coceone
weitere
Cocos nucifera
crotatanin retusa
Doda narteina
Eeichelis fructtcosa
Ipanen pea-caproe,
Jones sp

Yyltega peruviana
Eantana favolucrata
Plumtera alba

Poychotria undata
Rand
$=p$.
Rawoleia totraphylie

Renirea naritina

Scaevola plunien!
Sideroxyion foetidise nun

Snttax ep.
Sporobolus vinginfous

Tabebuta pattica
Hania latiforiolara

228
---Page Break---
APPENDIX 4.4B Terwestrial species List at Punta Manati,

SPECIES

Leptodactylus sp.

Anolis crystatelis

Aves:

Cobunbiganiina passerina
Minus polygottus

Togus nexteanus

28
---Page Break---
Notics

This report wae prepared as an account of work sponoted by the United Staten

Government. Neither the United Stats nor the United States Atomic Energy Comm rmusion, nor any ofthc employers ner any of thet contracton, subcontractor OF ?her employees, makes any warenty, expres or implied, ot saimrs any lege aby oF responsibilty for the accuracy. completeness or usefulness of any Information, appara, product of proces dione oF represents tht ts ust Stould not infringe pratly owned nights

